Suppr超能文献

AtDREB1D转录因子的过表达提高了大豆的耐旱性。

Overexpression of AtDREB1D transcription factor improves drought tolerance in soybean.

作者信息

Guttikonda Satish K, Valliyodan Babu, Neelakandan Anjanasree K, Tran Lam-Son Phan, Kumar Rajesh, Quach Truyen N, Voothuluru Priyamvada, Gutierrez-Gonzalez Juan J, Aldrich Donavan L, Pallardy Stephen G, Sharp Robert E, Ho Tuan-Hua David, Nguyen Henry T

机构信息

National Center for Soybean Biotechnology and Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.

出版信息

Mol Biol Rep. 2014 Dec;41(12):7995-8008. doi: 10.1007/s11033-014-3695-3. Epub 2014 Sep 6.

Abstract

Drought is one of the major abiotic stresses that affect productivity in soybean (Glycine max L.) Several genes induced by drought stress include functional genes and regulatory transcription factors. The Arabidopsis thaliana DREB1D transcription factor driven by the constitutive and ABA-inducible promoters was introduced into soybean through Agrobacterium tumefaciens-mediated gene transfer. Several transgenic lines were generated and molecular analysis was performed to confirm transgene integration. Transgenic plants with an ABA-inducible promoter showed a 1.5- to two-fold increase of transgene expression under severe stress conditions. Under well-watered conditions, transgenic plants with constitutive and ABA-inducible promoters showed reduced total leaf area and shoot biomass compared to non-transgenic plants. No significant differences in root length or root biomass were observed between transgenic and non-transgenic plants under non-stress conditions. When subjected to gradual water deficit, transgenic plants maintained higher relative water content because the transgenic lines used water more slowly as a result of reduced total leaf area. This caused them to wilt slower than non-transgenic plants. Transgenic plants showed differential drought tolerance responses with a significantly higher survival rate compared to non-transgenic plants when subjected to comparable severe water-deficit conditions. Moreover, the transgenic plants also showed improved drought tolerance by maintaining 17-24 % greater leaf cell membrane stability compared to non-transgenic plants. The results demonstrate the feasibility of engineering soybean for enhanced drought tolerance by expressing stress-responsive genes.

摘要

干旱是影响大豆(Glycine max L.)产量的主要非生物胁迫之一。干旱胁迫诱导的几个基因包括功能基因和调控转录因子。通过根癌农杆菌介导的基因转移,将由组成型和ABA诱导型启动子驱动的拟南芥DREB1D转录因子导入大豆。产生了几个转基因株系,并进行了分子分析以确认转基因整合。具有ABA诱导型启动子的转基因植物在严重胁迫条件下转基因表达增加了1.5至两倍。在水分充足的条件下,与非转基因植物相比,具有组成型和ABA诱导型启动子的转基因植物的总叶面积和地上部生物量减少。在非胁迫条件下,转基因植物和非转基因植物的根长或根生物量没有显著差异。当受到逐渐的水分亏缺时,转基因植物保持较高的相对含水量,因为转基因株系由于总叶面积减少而更缓慢地利用水分。这使得它们比非转基因植物枯萎得更慢。在相当严重的水分亏缺条件下,转基因植物表现出不同的耐旱反应,存活率显著高于非转基因植物。此外,与非转基因植物相比,转基因植物通过保持叶片细胞膜稳定性提高17 - 24%,也表现出更强的耐旱性。结果证明了通过表达胁迫响应基因来培育耐旱性增强的大豆的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验