Department of Chemistry, Seoul National University , Seoul 151-747, South Korea.
J Am Chem Soc. 2014 Oct 8;136(40):14052-9. doi: 10.1021/ja504270d. Epub 2014 Sep 23.
The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.
等离子体纳米结构的设计、合成和控制,特别是具有超小等离子体耦合纳米间隙(1nm 或更小)的等离子体纳米结构,在化学、纳米科学、材料科学、光学和纳米生物技术中具有重要的意义和价值。在这里,我们研究并建立了基于巯基化 DNA 的合成原理和方法,用于形成和控制具有各种内部纳米间隙和 Au 壳结构的 Au 核-纳米间隙-Au 壳结构[Au-纳米桥连纳米间隙粒子(Au-NNPs)]。我们发现,四种不同碱基与 Au 核的结合亲和力和模式的差异、DNA 序列、DNA 接枝密度和化学试剂改变了 Au 壳生长机制和在巯基化 DNA 修饰的 Au 核上形成内部纳米间隙的过程。重要的是,多 A 或多 C 序列会形成一个更宽的内部纳米间隙,Au 壳更光滑,而多 T 序列会形成一个更窄的内部间隙,Au 壳更粗糙,基于电磁场计算和实验结果,我们揭示了内部等离子体纳米间隙的宽度、Au 壳结构、电磁场和表面增强拉曼散射之间的关系。本文所展示的这些原理和发现为基于巯基化 DNA 的化学在形成和控制具有1nm 等离子体间隙的金属纳米结构提供了基础,并深入了解了等离子体 NNPs 的光学性质,这些等离子体纳米间隙结构可用作强可控光学信号产生的纳米探针。