Suppr超能文献

基于聚多巴胺的定制等离子体纳米间隙纳米粒子的方法:从纳米间隙工程到多功能性。

Polydopamine-Enabled Approach toward Tailored Plasmonic Nanogapped Nanoparticles: From Nanogap Engineering to Multifunctionality.

机构信息

School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457.

Cancer Center, Union Hospital, Huazhong University of Science & Technology , Wuhan 430022, China.

出版信息

ACS Nano. 2016 Dec 27;10(12):11066-11075. doi: 10.1021/acsnano.6b05951. Epub 2016 Dec 1.

Abstract

We present a platform strategy that offers diverse flexibility in tailoring the structure and properties of core-shell plasmonic nanoparticles with built-in nanogaps. Our results have demonstrated that polydopamine serves multiple concerted functions as a nanoscale spacer to afford controllable nanogap sizes, a redox-active coating to promote metal shell growth, and a reactive scaffold to exclusively lock molecular probes inside the nanogap for surface-enhanced Raman scattering (SERS). More interestingly, the universal adhesion of polydopamine on diverse colloidal substrates allows for customized synthesis of multishell plasmonic nanogapped nanoparticles (NNPs) and multifunctional hybrid NNPs containing different cores (i.e., magnetic nanoparticles), which are not readily accessible by conventional methods. Internally coupled plasmonic NNPs with broadly tunable spectroscopic properties, highly active SERS, and multifunctionality hold great promise for emerging fields, such as sensing, optoelectronics, and theranostics, as demonstrated by the ultrasensitive SERS detection and efficient photothermal killing of food-borne pathogens here.

摘要

我们提出了一种平台策略,可灵活地调整具有内置纳米间隙的核壳等离子体纳米粒子的结构和性质。我们的结果表明,聚多巴胺作为纳米级间隔物具有多种协同功能,可提供可控的纳米间隙尺寸、氧化还原活性涂层以促进金属壳生长,以及反应性支架,可将分子探针专一地锁定在纳米间隙内用于表面增强拉曼散射(SERS)。更有趣的是,聚多巴胺在各种胶体基底上的普遍粘附性允许定制合成多壳层等离子体纳米间隙纳米粒子(NPs)和包含不同核(即磁性纳米粒子)的多功能混合 NPs,这是常规方法不易实现的。具有广泛可调谐光谱特性、高活性 SERS 和多功能性的内耦合等离子体 NPs 在传感、光电和治疗等新兴领域具有广阔的应用前景,例如这里通过超灵敏 SERS 检测和有效光热杀灭食源性病原体得到了证明。

相似文献

3
Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles.等离子体纳米间隙增强拉曼散射与纳米粒子。
Acc Chem Res. 2016 Dec 20;49(12):2746-2755. doi: 10.1021/acs.accounts.6b00409. Epub 2016 Nov 8.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验