Sainz-Polo M Angela, González Beatriz, Menéndez Margarita, Pastor F I Javier, Sanz-Aparicio Julia
From the Departamentos de Cristalografía y Biología Estructural y.
Química Física Biólogica, Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006-Madrid and.
J Biol Chem. 2015 Jul 10;290(28):17116-30. doi: 10.1074/jbc.M115.659300. Epub 2015 May 22.
Elucidating the molecular mechanisms regulating multimodularity is a challenging task. Paenibacillus barcinonensis Xyn10C is a 120-kDa modular enzyme that presents the CBM22/GH10/CBM9 architecture found in a subset of large xylanases. We report here the three-dimensional structure of the Xyn10C N-terminal region, containing the xylan-binding CBM22-1-CBM22-2 tandem (Xyn10C-XBD), which represents the first solved crystal structure of two contiguous CBM22 modules. Xyn10C-XBD is folded into two separate CBM22 modules linked by a flexible segment that endows the tandem with extraordinary plasticity. Each isolated domain has been expressed and crystallized, and their binding abilities have been investigated. Both domains contain the R(W/Y)YYE motif required for xylan binding. However, crystallographic analysis of CBM22-2 complexes shows Trp-308 as an additional binding determinant. The long loop containing Trp-308 creates a platform that possibly contributes to the recognition of precise decorations at subsite S2. CBM22-2 may thus define a subset of xylan-binding CBM22 modules directed to particular regions of the polysaccharide. Affinity electrophoresis reveals that Xyn10C-XBD binds arabinoxylans more tightly, which is more apparent when CBM22-2 is tested against highly substituted xylan. The crystal structure of the catalytic domain, also reported, shows the capacity of the active site to accommodate xylan substitutions at almost all subsites. The structural differences found at both Xyn10C-XBD domains are consistent with the isothermal titration calorimetry experiments showing two sites with different affinities in the tandem. On the basis of the distinct characteristics of CBM22, a delivery strategy of Xyn10C mediated by Xyn10C-XBD is proposed.
阐明调节多模块性的分子机制是一项具有挑战性的任务。巴塞罗那类芽孢杆菌Xyn10C是一种120 kDa的模块化酶,具有在一部分大型木聚糖酶中发现的CBM22/GH10/CBM9结构。我们在此报告Xyn10C N端区域的三维结构,该区域包含木聚糖结合CBM22-1-CBM22-2串联结构(Xyn10C-XBD),这是首次解析的两个连续CBM22模块的晶体结构。Xyn10C-XBD折叠成两个通过柔性片段连接的独立CBM22模块,赋予该串联结构非凡的可塑性。每个分离的结构域都已表达并结晶,并研究了它们的结合能力。两个结构域都含有木聚糖结合所需的R(W/Y)YYE基序。然而,CBM22-2复合物的晶体学分析表明,色氨酸-308是另一个结合决定因素。包含色氨酸-308的长环形成了一个平台,可能有助于识别亚位点S2处的精确修饰。因此,CBM22-2可能定义了一类针对多糖特定区域的木聚糖结合CBM22模块。亲和电泳显示,Xyn10C-XBD与阿拉伯木聚糖的结合更紧密,当用CBM22-2检测高度取代的木聚糖时,这种现象更明显。还报道了催化结构域的晶体结构,显示活性位点几乎在所有亚位点都能容纳木聚糖取代。在Xyn10C-XBD两个结构域发现的结构差异与等温滴定量热法实验结果一致,该实验表明串联结构中有两个具有不同亲和力的位点。基于CBM22的独特特性,提出了一种由Xyn10C-XBD介导的Xyn10C递送策略。