Krauter Caroline M, Schirmer Jochen, Jacob Christoph R, Pernpointner Markus, Dreuw Andreas
Theoretical Chemistry, Heidelberg University, Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany.
Center for Functional Nanostructures and Institute of Physical Chemistry, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe, Germany.
J Chem Phys. 2014 Sep 14;141(10):104101. doi: 10.1063/1.4894266.
In solid state physics, electronic excitations are often classified as plasmons or single-particle excitations. The former class of states refers to collective oscillations of the electron density. The random-phase approximation allows for a quantum-theoretical treatment and a characterization on a microscopic level as a coherent superposition of a large number of particle-hole transitions with the same momentum transfer. However, small systems such as molecules or small nanoclusters lack the basic properties (momentum conservation and uniform exchange interaction) responsible for the formation of plasmons in the solid-state case. Despite an enhanced interest in plasmon-based technologies and an increasing number of studies regarding plasmons in molecules and small nanoclusters, their definition on a microscopic level of theory remains ambiguous. In this work, we analyze the microscopic properties of molecular plasmons in comparison with the homogeneous electron gas as a model system. Subsequently, the applicability of the derived characteristics is validated by analyzing the electronic excitation vectors with respect to orbital transitions for two linear polyenes within second order versions of the algebraic diagrammatic construction scheme for the polarization propagator.
在固态物理学中,电子激发通常被分类为等离激元和单粒子激发。前一类状态指的是电子密度的集体振荡。随机相位近似允许进行量子理论处理,并在微观层面将其表征为大量具有相同动量转移的粒子 - 空穴跃迁的相干叠加。然而,诸如分子或小纳米团簇之类的小系统缺乏在固态情况下形成等离激元所需的基本性质(动量守恒和均匀交换相互作用)。尽管基于等离激元的技术越来越受到关注,并且关于分子和小纳米团簇中等离激元的研究数量不断增加,但它们在微观理论层面的定义仍然不明确。在这项工作中,我们将分子等离激元的微观性质与作为模型系统的均匀电子气进行比较分析。随后,通过在极化传播子的代数图示构建方案的二阶版本中,针对两个线性多烯的轨道跃迁分析电子激发矢量,验证了所推导特性的适用性。