Suppr超能文献

银纳米颗粒在大鼠肺部的持久性:剂量、尺寸和化学成分的影响。

Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition.

作者信息

Anderson Donald S, Silva Rona M, Lee Danielle, Edwards Patricia C, Sharmah Arjun, Guo Ting, Pinkerton Kent E, Van Winkle Laura S

机构信息

Center for Health and the Environment,University of California Davis , Davis, CA , USA .

出版信息

Nanotoxicology. 2015;9(5):591-602. doi: 10.3109/17435390.2014.958116. Epub 2014 Sep 18.

Abstract

Increasing silver nanoparticle (AgNP) use in sprays, consumer products, and medical devices has raised concerns about potential health effects. While previous studies have investigated AgNPs, most were limited to a single particle size or surface coating. In this study, we investigated the effect of size, surface coating, and dose on the persistence of silver in the lung following exposure to AgNP. Adult male rats were intratracheally instilled with four different AgNPs: 20 or 110 nm in size and coated with either citrate or polyvinylpyrrolidone (PVP) at 0.5 or 1.0 mg/kg doses. Silver retention was assessed in the lung at 1, 7, and 21 d post exposure. ICP-MS quantification demonstrated that citrate-coated AgNPs persisted in the lung to 21 d with retention greater than 90%, while PVP-coated AgNP had less than 30% retention. Localization of silver in lung tissue at 1 d post exposure demonstrated decreased silver in proximal airways exposed to 110 nm particles compared with 20 nm AgNPs. In terminal bronchioles 1 d post exposure, silver was localized to surface epithelium but was more prominent in the basement membrane at 7 d. Silver positive macrophages in bronchoalveolar lavage fluid decreased more quickly after exposure to particles coated with PVP. We conclude that PVP-coated AgNPs had less retention in the lung tissue over time and larger particles were more rapidly cleared from large airways than smaller particles. The 20 nm citrate particles showed the greatest effect, increasing lung macrophages even 21 d after exposure, and resulted in the greatest silver retention in lung tissue.

摘要

银纳米颗粒(AgNP)在喷雾剂、消费品和医疗设备中的使用日益增加,引发了人们对其潜在健康影响的担忧。虽然之前的研究对AgNP进行了调查,但大多数研究仅限于单一粒径或表面涂层。在本研究中,我们调查了粒径、表面涂层和剂量对暴露于AgNP后银在肺部持久性的影响。成年雄性大鼠经气管内注入四种不同的AgNP:粒径为20或110纳米,表面分别包覆柠檬酸盐或聚乙烯吡咯烷酮(PVP),剂量为0.5或1.0毫克/千克。在暴露后1、7和21天评估肺部的银潴留情况。电感耦合等离子体质谱(ICP-MS)定量分析表明,柠檬酸盐包覆的AgNP在肺部持续存在至21天,潴留率大于90%,而PVP包覆的AgNP潴留率小于30%。暴露后1天肺部组织中银的定位显示,与20纳米的AgNP相比,暴露于110纳米颗粒的近端气道中银含量降低。暴露后1天,在终末细支气管中,银定位于表面上皮,但在7天时在基底膜中更为明显。支气管肺泡灌洗液中银阳性巨噬细胞在暴露于PVP包覆的颗粒后下降得更快。我们得出结论,随着时间的推移,PVP包覆的AgNP在肺组织中的潴留较少,较大颗粒比较小颗粒从大气道中清除得更快。20纳米的柠檬酸盐颗粒显示出最大的影响,即使在暴露后21天仍能增加肺巨噬细胞数量,并导致肺组织中银潴留最多。

相似文献

1
Persistence of silver nanoparticles in the rat lung: Influence of dose, size, and chemical composition.
Nanotoxicology. 2015;9(5):591-602. doi: 10.3109/17435390.2014.958116. Epub 2014 Sep 18.
2
Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung.
Toxicol Sci. 2015 Apr;144(2):366-81. doi: 10.1093/toxsci/kfv005. Epub 2015 Jan 9.
4
Pulmonary effects of silver nanoparticle size, coating, and dose over time upon intratracheal instillation.
Toxicol Sci. 2015 Mar;144(1):151-62. doi: 10.1093/toxsci/kfu265. Epub 2015 Jan 26.
6
Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages.
Toxicology. 2015 Feb 3;328:84-92. doi: 10.1016/j.tox.2014.12.014. Epub 2014 Dec 16.
7
Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain.
PLoS One. 2015 Mar 6;10(3):e0119726. doi: 10.1371/journal.pone.0119726. eCollection 2015.
8
Silver nanoparticles alter zebrafish development and larval behavior: distinct roles for particle size, coating and composition.
Neurotoxicol Teratol. 2011 Nov-Dec;33(6):708-14. doi: 10.1016/j.ntt.2011.02.002. Epub 2011 Feb 22.
9
Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity.
Nanotoxicology. 2016;10(1):118-27. doi: 10.3109/17435390.2015.1038330. Epub 2015 Jul 7.

引用本文的文献

2
Gemcitabine and synthesized silver nanoparticles impact on chemically induced hepatocellular carcinoma in male rats.
Int J Immunopathol Pharmacol. 2024 Jan-Dec;38:3946320241263352. doi: 10.1177/03946320241263352.
3
Zeolitic imidazolate framework-8: a versatile nanoplatform for tissue regeneration.
Front Bioeng Biotechnol. 2024 Apr 9;12:1386534. doi: 10.3389/fbioe.2024.1386534. eCollection 2024.
6
Advanced sanitation products infused with silver nanoparticles for viral protection and their ecological and environmental consequences.
Environ Technol Innov. 2022 Nov;28:102924. doi: 10.1016/j.eti.2022.102924. Epub 2022 Sep 27.
7
9
Macrophage-Targeted Nanomedicines for ARDS/ALI: Promise and Potential.
Inflammation. 2022 Dec;45(6):2124-2141. doi: 10.1007/s10753-022-01692-3. Epub 2022 May 31.
10
Surface coatings alter transcriptional responses to silver nanoparticles following oral exposure.
NanoImpact. 2020 Jan;17. doi: 10.1016/j.impact.2019.100205. Epub 2019 Dec 24.

本文引用的文献

1
Low-Temperature Properties of Silver.
J Res Natl Inst Stand Technol. 1995 Mar-Apr;100(2):119-171. doi: 10.6028/jres.100.012.
4
Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size.
ACS Nano. 2014 Jan 28;8(1):222-33. doi: 10.1021/nn403256v. Epub 2013 Dec 30.
6
Nanotechnology as a therapeutic tool to combat microbial resistance.
Adv Drug Deliv Rev. 2013 Nov;65(13-14):1803-15. doi: 10.1016/j.addr.2013.07.011. Epub 2013 Jul 24.
7
Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective.
J R Soc Interface. 2013 Jul 24;10(87):20130396. doi: 10.1098/rsif.2013.0396. Print 2013 Oct 6.
8
Nanosilver: weighing the risks and benefits.
Environ Health Perspect. 2013 Jul;121(7):A220-5. doi: 10.1289/ehp.121-a220.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验