Suppr超能文献

利用双梯度和空间相关平滑约束进行 SD-OCT 图像的自动视网膜层分割。

Automated retinal layers segmentation in SD-OCT images using dual-gradient and spatial correlation smoothness constraint.

机构信息

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

出版信息

Comput Biol Med. 2014 Nov;54:116-28. doi: 10.1016/j.compbiomed.2014.08.028. Epub 2014 Sep 6.

Abstract

Automatic segmentation of retinal layers in spectral domain optical coherence tomography (SD-OCT) images plays a vital role in the quantitative assessment of retinal disease, because it provides detailed information which is hard to process manually. A number of algorithms to automatically segment retinal layers have been developed; however, accurate edge detection is challenging. We developed an automatic algorithm for segmenting retinal layers based on dual-gradient and spatial correlation smoothness constraint. The proposed algorithm utilizes a customized edge flow to produce the edge map and a convolution operator to obtain local gradient map in the axial direction. A valid search region is then defined to identify layer boundaries. Finally, a spatial correlation smoothness constraint is applied to remove anomalous points at the layer boundaries. Our approach was tested on two datasets including 10 cubes from 10 healthy eyes and 15 cubes from 6 patients with age-related macular degeneration. A quantitative evaluation of our method was performed on more than 600 images from cubes obtained in five healthy eyes. Experimental results demonstrated that the proposed method can estimate six layer boundaries accurately. Mean absolute boundary positioning differences and mean absolute thickness differences (mean±SD) were 4.43±3.32 μm and 0.22±0.24 μm, respectively.

摘要

自动分割谱域光学相干断层扫描(SD-OCT)图像中的视网膜层在视网膜疾病的定量评估中起着至关重要的作用,因为它提供了难以手动处理的详细信息。已经开发了许多用于自动分割视网膜层的算法,但是准确的边缘检测具有挑战性。我们开发了一种基于双梯度和空间相关平滑约束的自动分割视网膜层的算法。所提出的算法利用定制的边缘流生成边缘图,并使用卷积算子获得轴向的局部梯度图。然后定义有效的搜索区域以识别层边界。最后,应用空间相关平滑约束以去除层边界处的异常点。我们的方法在包括 10 个来自 10 只健康眼睛的立方体和 6 个与年龄相关的黄斑变性患者的 15 个立方体的两个数据集上进行了测试。在来自五个健康眼睛的立方体获得的 600 多张图像上对我们的方法进行了定量评估。实验结果表明,该方法可以准确地估计六个层边界。平均绝对边界定位差异和平均绝对厚度差异(平均值±标准差)分别为 4.43±3.32μm 和 0.22±0.24μm。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验