Center for Excitonics, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
1] Center for Excitonics, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA [2] Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Nat Mater. 2014 Nov;13(11):1026-32. doi: 10.1038/nmat4073. Epub 2014 Sep 21.
The control of exciton transport in organic materials is of fundamental importance for the development of efficient light-harvesting systems. This transport is easily deteriorated by traps in the disordered energy landscape. Here, we propose and analyse a system that supports topological Frenkel exciton edge states. Backscattering of these chiral Frenkel excitons is prohibited by symmetry, ensuring that the transport properties of such a system are robust against disorder. To implement our idea, we propose a two-dimensional periodic array of tilted porphyrins interacting with a homogeneous magnetic field. This field serves to break time-reversal symmetry and results in lattice fluxes that mimic the Aharonov-Bohm phase acquired by electrons. Our proposal is the first blueprint for realizing topological phases of matter in molecular aggregates and suggests a paradigm for engineering novel excitonic materials.
在有机材料中,激子输运的控制对于高效光收集系统的发展至关重要。这种输运很容易被无序能景观中的陷阱所破坏。在这里,我们提出并分析了一个支持拓扑 Frenkel 激子边缘态的系统。这些手性 Frenkel 激子的背散射受到对称性的禁止,从而确保了这样一个系统的输运性质对无序具有鲁棒性。为了实现我们的想法,我们提出了一个二维倾斜卟啉的周期性阵列,与一个均匀磁场相互作用。这个磁场用于打破时间反演对称性,并导致晶格通量,模拟电子获得的 Aharonov-Bohm 相位。我们的建议是在分子聚集体中实现物质拓扑相的第一个蓝图,并为设计新型激子材料提供了范例。