Pannir-Sivajothi Sindhana, Stern Nathaniel P, Yuen-Zhou Joel
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA.
Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA.
Nanophotonics. 2023 Jun 12;12(15):3109-3119. doi: 10.1515/nanoph-2023-0158. eCollection 2023 Jul.
Strong coupling between electronic excitations in materials and photon modes results in the formation of polaritons, which display larger nonlinearities than their photonic counterparts due to their material component. We theoretically investigate how to optically control the topological properties of molecular and solid-state exciton-polariton systems by exploiting one such nonlinearity: saturation of electronic transitions. We demonstrate modification of the Berry curvature of three different materials when placed within a Fabry-Perot cavity and pumped with circularly polarized light, illustrating the broad applicability of our scheme. Importantly, while optical pumping leads to nonzero Chern invariants, unidirectional edge states do not emerge in our system as the bulk-boundary correspondence is not applicable. This work demonstrates a versatile approach to control topological properties of novel optoelectronic materials.
材料中的电子激发与光子模式之间的强耦合导致了极化激元的形成,由于其材料成分,极化激元比光子对应物表现出更大的非线性。我们从理论上研究了如何通过利用一种这样的非线性:电子跃迁的饱和,来光学控制分子和固态激子 - 极化激元系统的拓扑性质。我们展示了三种不同材料置于法布里 - 珀罗腔中并用圆偏振光泵浦时贝里曲率的变化,说明了我们方案的广泛适用性。重要的是,虽然光泵浦导致非零的陈数不变量,但由于体边对应不适用,单向边缘态在我们的系统中并未出现。这项工作展示了一种控制新型光电子材料拓扑性质的通用方法。