Suppr超能文献

染色体间同源性搜索驱动替代性端粒定向移动和联会。

Interchromosomal homology searches drive directional ALT telomere movement and synapsis.

作者信息

Cho Nam Woo, Dilley Robert L, Lampson Michael A, Greenberg Roger A

机构信息

Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA.

Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Cell. 2014 Sep 25;159(1):108-121. doi: 10.1016/j.cell.2014.08.030.

Abstract

Telomere length maintenance is a requisite feature of cellular immortalization and a hallmark of human cancer. While most human cancers express telomerase activity, ∼10%-15% employ a recombination-dependent telomere maintenance pathway known as alternative lengthening of telomeres (ALT) that is characterized by multitelomere clusters and associated promyelocytic leukemia protein bodies. Here, we show that a DNA double-strand break (DSB) response at ALT telomeres triggers long-range movement and clustering between chromosome termini, resulting in homology-directed telomere synthesis. Damaged telomeres initiate increased random surveillance of nuclear space before displaying rapid directional movement and association with recipient telomeres over micron-range distances. This phenomenon required Rad51 and the Hop2-Mnd1 heterodimer, which are essential for homologous chromosome synapsis during meiosis. These findings implicate a specialized homology searching mechanism in ALT-dependent telomere maintenance and provide a molecular basis underlying the preference for recombination between nonsister telomeres during ALT.

摘要

端粒长度维持是细胞永生化的必要特征,也是人类癌症的一个标志。虽然大多数人类癌症表达端粒酶活性,但约10%-15%的癌症采用一种依赖重组的端粒维持途径,称为端粒替代延长(ALT),其特征是多端粒簇和相关的早幼粒细胞白血病蛋白体。在这里,我们表明,ALT端粒处的DNA双链断裂(DSB)反应触发了染色体末端之间的长距离移动和聚集,导致同源性定向端粒合成。受损的端粒在显示出快速的定向移动并与受体端粒在微米级距离上结合之前,会启动对核空间的随机监测增加。这种现象需要Rad51和Hop2-Mnd1异二聚体,它们在减数分裂期间对同源染色体联会至关重要。这些发现暗示了ALT依赖的端粒维持中一种特殊的同源性搜索机制,并为ALT期间非姐妹端粒之间重组偏好提供了分子基础。

相似文献

1
Interchromosomal homology searches drive directional ALT telomere movement and synapsis.
Cell. 2014 Sep 25;159(1):108-121. doi: 10.1016/j.cell.2014.08.030.
4
ALT telomeres borrow from meiosis to get moving.
Cell. 2014 Sep 25;159(1):11-12. doi: 10.1016/j.cell.2014.09.013.
6
Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination.
Proc Natl Acad Sci U S A. 2009 Sep 15;106(37):15726-31. doi: 10.1073/pnas.0907689106. Epub 2009 Aug 26.
7
The macroH2A1.2 histone variant links ATRX loss to alternative telomere lengthening.
Nat Struct Mol Biol. 2019 Mar;26(3):213-219. doi: 10.1038/s41594-019-0192-3. Epub 2019 Mar 4.
8
Two telomeric ends of acrocentric chromosome play distinct roles in homologous chromosome synapsis in the fetal mouse oocyte.
Chromosoma. 2021 Mar;130(1):41-52. doi: 10.1007/s00412-021-00752-1. Epub 2021 Jan 25.
9
Telomerase suppresses formation of ALT-associated single-stranded telomeric C-circles.
Mol Cancer Res. 2013 Jun;11(6):557-67. doi: 10.1158/1541-7786.MCR-13-0013. Epub 2013 Mar 15.
10
Telomere maintenance by telomerase and by recombination can coexist in human cells.
Hum Mol Genet. 2001 Sep 1;10(18):1945-52. doi: 10.1093/hmg/10.18.1945.

引用本文的文献

1
Telomeric SUMO level influences the choices of APB formation pathways and ALT efficiency.
J Cell Biol. 2025 Oct 6;224(10). doi: 10.1083/jcb.202410073. Epub 2025 Sep 3.
2
Mechanisms and genomic implications of break-induced replication.
Nat Struct Mol Biol. 2025 Aug 22. doi: 10.1038/s41594-025-01644-z.
5
TRIM24 directs replicative stress responses to maintain ALT telomeres via chromatin signaling.
Mol Cell. 2025 Jul 17;85(14):2636-2653.e8. doi: 10.1016/j.molcel.2025.06.009. Epub 2025 Jul 3.
6
Phase Separation Regulates Metabolism, Mitochondria, and Diseases.
MedComm (2020). 2025 Jul 1;6(7):e70283. doi: 10.1002/mco2.70283. eCollection 2025 Jul.
7
The Dynamic Interactions of m6A Modification and R-Loops: Implications for Genome Stability.
Epigenomes. 2025 Jun 11;9(2):21. doi: 10.3390/epigenomes9020021.
8
Conserved and Unique Features of Terminal Telomeric Sequences in ALT-Positive Cancer Cells.
bioRxiv. 2025 Jun 2:2025.02.27.640565. doi: 10.1101/2025.02.27.640565.
9
Nuclear and genome dynamics underlying DNA double-strand break repair.
Nat Rev Mol Cell Biol. 2025 Mar 17. doi: 10.1038/s41580-025-00828-1.
10
Multiple functions of the ALT favorite helicase, BLM.
Cell Biosci. 2025 Mar 1;15(1):31. doi: 10.1186/s13578-025-01372-3.

本文引用的文献

1
HOP2-MND1 modulates RAD51 binding to nucleotides and DNA.
Nat Commun. 2014 Jun 19;5:4198. doi: 10.1038/ncomms5198.
2
Mechanisms and principles of homology search during recombination.
Nat Rev Mol Cell Biol. 2014 Jun;15(6):369-83. doi: 10.1038/nrm3805. Epub 2014 May 14.
3
Rapid induction of alternative lengthening of telomeres by depletion of the histone chaperone ASF1.
Nat Struct Mol Biol. 2014 Feb;21(2):167-74. doi: 10.1038/nsmb.2754. Epub 2014 Jan 12.
4
RecA bundles mediate homology pairing between distant sisters during DNA break repair.
Nature. 2014 Feb 13;506(7487):249-53. doi: 10.1038/nature12868. Epub 2013 Dec 22.
5
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system.
Cell. 2013 Dec 19;155(7):1479-91. doi: 10.1016/j.cell.2013.12.001.
6
Spatial dynamics of chromosome translocations in living cells.
Science. 2013 Aug 9;341(6146):660-4. doi: 10.1126/science.1237150.
7
The telomere deprotection response is functionally distinct from the genomic DNA damage response.
Mol Cell. 2013 Jul 25;51(2):141-55. doi: 10.1016/j.molcel.2013.06.006. Epub 2013 Jul 11.
8
Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination.
Nat Struct Mol Biol. 2013 Mar;20(3):317-25. doi: 10.1038/nsmb.2499. Epub 2013 Feb 3.
9
A three-state model of telomere control over human proliferative boundaries.
Curr Opin Cell Biol. 2012 Dec;24(6):731-8. doi: 10.1016/j.ceb.2012.08.007. Epub 2012 Sep 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验