Suppr超能文献

使用原子力显微镜并辅以超分辨率成像的细胞水平纳米操作。

Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging.

作者信息

Chacko Jenu Varghese, Harke Benjamin, Canale Claudio, Diaspro Alberto

机构信息

Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, ItalybUniversity of Genova, Department of Physics, Via Dodecaneso 33, 16153 Genoa, Italy.

Nanophysics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163 Genoa, ItalycAbberior Instruments GmbH, Göttingen D-37077, Germany.

出版信息

J Biomed Opt. 2014;19(10):105003. doi: 10.1117/1.JBO.19.10.105003.

Abstract

Atomic force microscopes (AFM) provide topographical and mechanical information of the sample with very good axial resolution, but are limited in terms of chemical specificity and operation time-scale. An optical microscope coupled to an AFM can recognize and target an area of interest using specific identification markers like fluorescence tags. A high resolution fluorescence microscope can visualize fluorescence structures or molecules below the classical optical diffraction limit and reach nanometer scale resolution. A stimulated emission depletion (STED) microscopy superresolution (SR) microscope coupled to an AFM is an example in which the AFM tip gains nanoscale manipulation capabilities. The SR targeting and visualization ability help in fast and specific identification of subdiffraction-sized cellular structures and manoeuvring the AFM tip onto the target. We demonstrate how to build a STED AFM and use it for biological nanomanipulation aided with fast visualization. The STED AFM based bionanomanipulation is presented for the first time in this article. This study points to future nanosurgeries performable at single-cell level and a physical targeted manipulation of cellular features as it is currently used in research domains like nanomedicine and nanorobotics.

摘要

原子力显微镜(AFM)能以非常好的轴向分辨率提供样品的形貌和力学信息,但在化学特异性和操作时间尺度方面存在局限性。与AFM耦合的光学显微镜可以使用荧光标签等特定识别标记来识别和定位感兴趣的区域。高分辨率荧光显微镜可以使低于经典光学衍射极限的荧光结构或分子可视化,并达到纳米级分辨率。与AFM耦合的受激发射损耗(STED)显微镜超分辨率(SR)显微镜就是一个例子,其中AFM探针获得了纳米级操纵能力。SR靶向和可视化能力有助于快速、特异性地识别亚衍射尺寸的细胞结构,并将AFM探针操纵到目标上。我们展示了如何构建一台STED AFM,并将其用于借助快速可视化进行的生物纳米操纵。本文首次介绍了基于STED AFM的生物纳米操纵。这项研究指出了未来在单细胞水平上可进行的纳米手术,以及对细胞特征进行物理靶向操纵,正如目前在纳米医学和纳米机器人等研究领域中所使用的那样。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验