Kong Eunji, Zabeh Erfan, Liao Zhenrui, Mihaila Tiberiu S, Wilson Caroline, Santhirasegaran Charan, Peterka Darcy S, Losonczy Attila, Geiller Tristan
Department of Neuroscience, Columbia University, New York, NY, United States.
Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States.
bioRxiv. 2024 Nov 7:2024.11.07.622379. doi: 10.1101/2024.11.07.622379.
Stable and flexible neural representations of space in the hippocampus are crucial for navigating complex environments. However, how these distinct representations emerge from the underlying local circuit architecture remains unknown. Using two-photon imaging of CA3 subareas during active behavior, we reveal opposing coding strategies within specific CA3 subregions, with proximal neurons demonstrating stable and generalized representations and distal neurons showing dynamic and context-specific activity. We show in artificial neural network models that varying the recurrence level causes these differences in coding properties to emerge. We confirmed the contribution of recurrent connectivity to functional heterogeneity by characterizing the representational geometry of neural recordings and comparing it with theoretical predictions of neural manifold dimensionality. Our results indicate that local circuit organization, particularly recurrent connectivity among excitatory neurons, plays a key role in shaping complementary spatial representations within the hippocampus.
海马体中稳定且灵活的空间神经表征对于在复杂环境中导航至关重要。然而,这些不同的表征如何从潜在的局部电路结构中产生仍然未知。通过在主动行为期间对CA3子区域进行双光子成像,我们揭示了特定CA3子区域内相反的编码策略,近端神经元表现出稳定且通用的表征,而远端神经元则表现出动态且特定于上下文的活动。我们在人工神经网络模型中表明,改变循环水平会导致编码特性出现这些差异。我们通过表征神经记录的表征几何结构并将其与神经流形维度的理论预测进行比较,证实了循环连接对功能异质性的贡献。我们的结果表明,局部电路组织,特别是兴奋性神经元之间的循环连接,在塑造海马体内互补的空间表征中起着关键作用。