Hyster Todd K, Farwell Christopher C, Buller Andrew R, McIntosh John A, Arnold Frances H
Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States.
J Am Chem Soc. 2014 Nov 5;136(44):15505-8. doi: 10.1021/ja509308v. Epub 2014 Oct 24.
We recently demonstrated that variants of cytochrome P450BM3 (CYP102A1) catalyze the insertion of nitrogen species into benzylic C-H bonds to form new C-N bonds. An outstanding challenge in the field of C-H amination is catalyst-controlled regioselectivity. Here, we report two engineered variants of P450BM3 that provide divergent regioselectivity for C-H amination-one favoring amination of benzylic C-H bonds and the other favoring homo-benzylic C-H bonds. The two variants provide nearly identical kinetic isotope effect values (2.8-3.0), suggesting that C-H abstraction is rate-limiting. The 2.66-Å crystal structure of the most active enzyme suggests that the engineered active site can preorganize the substrate for reactivity. We hypothesize that the enzyme controls regioselectivity through localization of a single C-H bond close to the iron nitrenoid.
我们最近证明,细胞色素P450BM3(CYP102A1)的变体可催化将氮物种插入苄基C-H键中以形成新的C-N键。C-H胺化领域的一个突出挑战是催化剂控制的区域选择性。在此,我们报告了P450BM3的两个工程变体,它们为C-H胺化提供了不同的区域选择性——一个有利于苄基C-H键的胺化,另一个有利于同苄基C-H键的胺化。这两个变体提供了几乎相同的动力学同位素效应值(2.8 - 3.0),表明C-H的提取是限速步骤。活性最高的酶的2.66 Å晶体结构表明,工程化的活性位点可以使底物预组织以进行反应。我们假设该酶通过将单个C-H键定位在靠近铁氮烯的位置来控制区域选择性。