Suppr超能文献

罕见变异与复杂疾病的群体遗传学

Population genetics of rare variants and complex diseases.

作者信息

Maher M Cyrus, Uricchio Lawrence H, Torgerson Dara G, Hernandez Ryan D

机构信息

Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA.

出版信息

Hum Hered. 2012;74(3-4):118-28. doi: 10.1159/000346826. Epub 2013 Apr 11.

Abstract

OBJECTIVES

Identifying drivers of complex traits from the noisy signals of genetic variation obtained from high-throughput genome sequencing technologies is a central challenge faced by human geneticists today. We hypothesize that the variants involved in complex diseases are likely to exhibit non-neutral evolutionary signatures. Uncovering the evolutionary history of all variants is therefore of intrinsic interest for complex disease research. However, doing so necessitates the simultaneous elucidation of the targets of natural selection and population-specific demographic history.

METHODS

Here we characterize the action of natural selection operating across complex disease categories, and use population genetic simulations to evaluate the expected patterns of genetic variation in large samples. We focus on populations that have experienced historical bottlenecks followed by explosive growth (consistent with many human populations), and describe the differences between evolutionarily deleterious mutations and those that are neutral.

RESULTS

Genes associated with several complex disease categories exhibit stronger signatures of purifying selection than non-disease genes. In addition, loci identified through genome-wide association studies of complex traits also exhibit signatures consistent with being in regions recurrently targeted by purifying selection. Through simulations, we show that population bottlenecks and rapid growth enable deleterious rare variants to persist at low frequencies just as long as neutral variants, but low-frequency and common variants tend to be much younger than neutral variants. This has resulted in a large proportion of modern-day rare alleles that have a deleterious effect on function and that potentially contribute to disease susceptibility.

CONCLUSIONS

The key question for sequencing-based association studies of complex traits is how to distinguish between deleterious and benign genetic variation. We used population genetic simulations to uncover patterns of genetic variation that distinguish these two categories, especially derived allele age, thereby providing inroads into novel methods for characterizing rare genetic variation driving complex diseases.

摘要

目标

从高通量基因组测序技术获得的嘈杂遗传变异信号中识别复杂性状的驱动因素,是当今人类遗传学家面临的核心挑战。我们假设,参与复杂疾病的变异可能会表现出非中性的进化特征。因此,揭示所有变异的进化历史对于复杂疾病研究具有内在意义。然而,要做到这一点,就必须同时阐明自然选择的目标和特定人群的人口统计学历史。

方法

在这里,我们描述了自然选择在复杂疾病类别中的作用,并使用群体遗传模拟来评估大样本中遗传变异的预期模式。我们关注那些经历过历史瓶颈后又出现爆发式增长的人群(这与许多人类群体一致),并描述了进化上有害的突变与中性突变之间的差异。

结果

与几种复杂疾病类别相关的基因比非疾病基因表现出更强的纯化选择特征。此外,通过复杂性状的全基因组关联研究确定的位点也表现出与处于纯化选择反复靶向区域一致的特征。通过模拟,我们表明群体瓶颈和快速增长使有害的稀有变异能够与中性变异一样在低频下持续存在,但低频和常见变异往往比中性变异年轻得多。这导致了很大一部分对功能有有害影响且可能导致疾病易感性的现代稀有等位基因。

结论

基于测序的复杂性状关联研究的关键问题是如何区分有害和良性遗传变异。我们使用群体遗传模拟来揭示区分这两类变异的遗传变异模式,特别是衍生等位基因年龄,从而为表征驱动复杂疾病的稀有遗传变异的新方法提供了途径。

相似文献

1
Population genetics of rare variants and complex diseases.
Hum Hered. 2012;74(3-4):118-28. doi: 10.1159/000346826. Epub 2013 Apr 11.
2
Balancing selection on genomic deletion polymorphisms in humans.
Elife. 2023 Jan 10;12:e79111. doi: 10.7554/eLife.79111.
3
Population growth inflates the per-individual number of deleterious mutations and reduces their mean effect.
Genetics. 2013 Nov;195(3):969-78. doi: 10.1534/genetics.113.153973. Epub 2013 Aug 26.
4
Deleterious alleles in the human genome are on average younger than neutral alleles of the same frequency.
PLoS Genet. 2013;9(2):e1003301. doi: 10.1371/journal.pgen.1003301. Epub 2013 Feb 28.
5
The impact of population demography and selection on the genetic architecture of complex traits.
PLoS Genet. 2014 May 29;10(5):e1004379. doi: 10.1371/journal.pgen.1004379. eCollection 2014.
6
Excess of Deleterious Mutations around HLA Genes Reveals Evolutionary Cost of Balancing Selection.
Mol Biol Evol. 2016 Oct;33(10):2555-64. doi: 10.1093/molbev/msw127. Epub 2016 Jun 28.
8
Human demographic history has amplified the effects of background selection across the genome.
PLoS Genet. 2018 Jun 18;14(6):e1007387. doi: 10.1371/journal.pgen.1007387. eCollection 2018 Jun.
9
Negative selection on complex traits limits phenotype prediction accuracy between populations.
Am J Hum Genet. 2021 Apr 1;108(4):620-631. doi: 10.1016/j.ajhg.2021.02.013. Epub 2021 Mar 9.
10
Population genetic simulations of complex phenotypes with implications for rare variant association tests.
Genet Epidemiol. 2015 Jan;39(1):35-44. doi: 10.1002/gepi.21866. Epub 2014 Nov 21.

引用本文的文献

1
Artificial intelligence in variant calling: a review.
Front Bioinform. 2025 Apr 23;5:1574359. doi: 10.3389/fbinf.2025.1574359. eCollection 2025.
2
Molecular Biomarkers in Neurological Diseases: Advances in Diagnosis and Prognosis.
Int J Mol Sci. 2025 Mar 1;26(5):2231. doi: 10.3390/ijms26052231.
3
Putative protective genomic variation in the Lithuanian population.
Genet Mol Biol. 2024 Apr 15;47(2):e20230030. doi: 10.1590/1678-4685-GMB-2023-0030. eCollection 2024.
5
Targeted Sequencing Detects Variants That May Contribute to the Risk of Neuropsychiatric Disorders.
Indian J Psychol Med. 2022 Sep;44(5):516-522. doi: 10.1177/0253717621993672. Epub 2021 Mar 25.
7
Translational and interdisciplinary insights into presbyacusis: A multidimensional disease.
Hear Res. 2021 Mar 15;402:108109. doi: 10.1016/j.heares.2020.108109. Epub 2020 Oct 31.
8
Where Are the Disease-Associated eQTLs?
Trends Genet. 2021 Feb;37(2):109-124. doi: 10.1016/j.tig.2020.08.009. Epub 2020 Sep 7.
9
Distinct subtypes of polycystic ovary syndrome with novel genetic associations: An unsupervised, phenotypic clustering analysis.
PLoS Med. 2020 Jun 23;17(6):e1003132. doi: 10.1371/journal.pmed.1003132. eCollection 2020 Jun.
10
The impact of nonsense-mediated mRNA decay on genetic disease, gene editing and cancer immunotherapy.
Nat Genet. 2019 Nov;51(11):1645-1651. doi: 10.1038/s41588-019-0517-5. Epub 2019 Oct 28.

本文引用的文献

1
Systematic localization of common disease-associated variation in regulatory DNA.
Science. 2012 Sep 7;337(6099):1190-5. doi: 10.1126/science.1222794. Epub 2012 Sep 5.
2
Rate of de novo mutations and the importance of father's age to disease risk.
Nature. 2012 Aug 23;488(7412):471-5. doi: 10.1038/nature11396.
3
Evolutionary meta-analysis of association studies reveals ancient constraints affecting disease marker discovery.
Mol Biol Evol. 2012 Sep;29(9):2087-94. doi: 10.1093/molbev/mss079. Epub 2012 Mar 1.
4
Genotype imputation with thousands of genomes.
G3 (Bethesda). 2011 Nov;1(6):457-70. doi: 10.1534/g3.111.001198. Epub 2011 Nov 1.
6
Resequencing candidate genes implicates rare variants in asthma susceptibility.
Am J Hum Genet. 2012 Feb 10;90(2):273-81. doi: 10.1016/j.ajhg.2012.01.008.
7
Genomics for the world.
Nature. 2011 Jul 13;475(7355):163-5. doi: 10.1038/475163a.
8
Classic selective sweeps were rare in recent human evolution.
Science. 2011 Feb 18;331(6019):920-4. doi: 10.1126/science.1198878.
10
An evolutionary framework for association testing in resequencing studies.
PLoS Genet. 2010 Nov 11;6(11):e1001202. doi: 10.1371/journal.pgen.1001202.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验