Lacasa Lucas, Nicosia Vincenzo, Latora Vito
School of Mathematical Sciences, Queen Mary University of London, Mile End Road, E14NS London, UK.
Sci Rep. 2015 Oct 21;5:15508. doi: 10.1038/srep15508.
Our understanding of a variety of phenomena in physics, biology and economics crucially depends on the analysis of multivariate time series. While a wide range tools and techniques for time series analysis already exist, the increasing availability of massive data structures calls for new approaches for multidimensional signal processing. We present here a non-parametric method to analyse multivariate time series, based on the mapping of a multidimensional time series into a multilayer network, which allows to extract information on a high dimensional dynamical system through the analysis of the structure of the associated multiplex network. The method is simple to implement, general, scalable, does not require ad hoc phase space partitioning, and is thus suitable for the analysis of large, heterogeneous and non-stationary time series. We show that simple structural descriptors of the associated multiplex networks allow to extract and quantify nontrivial properties of coupled chaotic maps, including the transition between different dynamical phases and the onset of various types of synchronization. As a concrete example we then study financial time series, showing that a multiplex network analysis can efficiently discriminate crises from periods of financial stability, where standard methods based on time-series symbolization often fail.
我们对物理、生物和经济学中各种现象的理解在很大程度上依赖于对多元时间序列的分析。虽然已经存在大量用于时间序列分析的工具和技术,但海量数据结构的日益可得性要求采用新的多维信号处理方法。我们在此提出一种分析多元时间序列的非参数方法,该方法基于将多维时间序列映射到多层网络,通过分析相关多重网络的结构来提取关于高维动力系统的信息。该方法易于实现、通用、可扩展,不需要特别的相空间划分,因此适用于分析大型、异构和非平稳时间序列。我们表明,相关多重网络的简单结构描述符能够提取和量化耦合混沌映射的非平凡特性,包括不同动态阶段之间的转变以及各种同步的起始。作为一个具体例子,我们随后研究金融时间序列,结果表明多重网络分析能够有效地将危机与金融稳定时期区分开来,而基于时间序列符号化的标准方法在这些时期往往失效。