Suppr超能文献

拟南芥通过减少无表达蛋白来降低渗透胁迫下的生长。

Arabidopsis reduces growth under osmotic stress by decreasing SPEECHLESS protein.

作者信息

Kumari Archana, Jewaria Pawan K, Bergmann Dominique C, Kakimoto Tatsuo

机构信息

Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan.

Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan Present address: Molecular Genetics, Leobener Str. 2, NW2, B 1030D, 28359 Bremen, Germany.

出版信息

Plant Cell Physiol. 2014 Dec;55(12):2037-46. doi: 10.1093/pcp/pcu159. Epub 2014 Nov 6.

Abstract

Plants, which are sessile unlike most animals, have evolved a system to reduce growth under stress; however, the molecular mechanisms of this stress response are not well known. During programmed development, a fraction of the leaf epidermal precursor cells become meristemoid mother cells (MMCs), which are stem cells that produce both stomatal guard cells and epidermal pavement cells. Here we report that Arabidopsis plants, in response to osmotic stress, post-transcriptionally decrease the protein level of SPEECHLESS, the transcription factor promoting MMC identity, through the action of a mitogen-activated protein kinase (MAPK) cascade. The growth reduction under osmotic stress was lessened by inhibition of the MAPK cascade or by a mutation that disrupted the MAPK target amino acids in SPEECHLESS, indicating that Arabidopsis reduces growth under stress by integrating the osmotic stress signal into the MAPK-SPEECHLESS core developmental pathway.

摘要

与大多数动物不同,植物是固着生长的,它们进化出了一种在胁迫下减少生长的系统;然而,这种应激反应的分子机制尚不清楚。在程序性发育过程中,一部分叶片表皮前体细胞会变成类分生组织母细胞(MMC),MMC是一种干细胞,可产生气孔保卫细胞和表皮铺板细胞。我们在此报告,拟南芥植物在受到渗透胁迫时,通过有丝分裂原激活蛋白激酶(MAPK)级联反应,在转录后降低促进MMC特性的转录因子“无言语”(SPEECHLESS)的蛋白质水平。抑制MAPK级联反应或通过破坏“无言语”中MAPK靶氨基酸的突变可减轻渗透胁迫下的生长减少,这表明拟南芥通过将渗透胁迫信号整合到MAPK-“无言语”核心发育途径中来减少胁迫下的生长。

相似文献

1
Arabidopsis reduces growth under osmotic stress by decreasing SPEECHLESS protein.
Plant Cell Physiol. 2014 Dec;55(12):2037-46. doi: 10.1093/pcp/pcu159. Epub 2014 Nov 6.
2
Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level.
Plant Cell Physiol. 2013 Aug;54(8):1253-62. doi: 10.1093/pcp/pct076. Epub 2013 May 17.
3
Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development.
Curr Biol. 2018 Apr 23;28(8):1273-1280.e3. doi: 10.1016/j.cub.2018.02.054. Epub 2018 Apr 5.
6
Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS.
Science. 2008 Nov 14;322(5904):1113-6. doi: 10.1126/science.1162263.
7
Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway.
Nature. 2012 Feb 5;482(7385):419-22. doi: 10.1038/nature10794.
9
Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS.
Nat Plants. 2019 Jul;5(7):742-754. doi: 10.1038/s41477-019-0440-x. Epub 2019 Jun 24.

引用本文的文献

1
Guardians of Water and Gas Exchange: Adaptive Dynamics of Stomatal Development and Patterning.
Plants (Basel). 2025 Aug 3;14(15):2405. doi: 10.3390/plants14152405.
2
SPEECHLESS duplication in grasses expands potential for environmental regulation of stomatal development.
bioRxiv. 2025 Jul 30:2025.07.29.667563. doi: 10.1101/2025.07.29.667563.
3
Stomatal development in the changing climate.
Development. 2024 Oct 15;151(20). doi: 10.1242/dev.202681. Epub 2024 Oct 21.
5
Regulation of stomatal development by epidermal, subepidermal and long-distance signals.
Plant Mol Biol. 2024 Jun 28;114(4):80. doi: 10.1007/s11103-024-01456-7.
6
Transcriptional repression of under water-deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance.
Plant Direct. 2024 May 24;8(5):e594. doi: 10.1002/pld3.594. eCollection 2024 May.
7
Different Leaf Anatomical Responses to Water Deficit in Maize and Soybean.
Life (Basel). 2023 Jan 20;13(2):290. doi: 10.3390/life13020290.
9
The evolution and expression of stomatal regulators in C3 and C4 crops: Implications on the divergent drought tolerance.
Front Plant Sci. 2023 Feb 1;14:1100838. doi: 10.3389/fpls.2023.1100838. eCollection 2023.

本文引用的文献

1
Direct roles of SPEECHLESS in the specification of stomatal self-renewing cells.
Science. 2014 Sep 26;345(6204):1605-9. doi: 10.1126/science.1256888. Epub 2014 Sep 4.
2
OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis.
Nature. 2014 Oct 16;514(7522):367-71. doi: 10.1038/nature13593. Epub 2014 Aug 27.
3
Tolerance to drought and salt stress in plants: Unraveling the signaling networks.
Front Plant Sci. 2014 Apr 22;5:151. doi: 10.3389/fpls.2014.00151. eCollection 2014.
4
Plant salt-tolerance mechanisms.
Trends Plant Sci. 2014 Jun;19(6):371-9. doi: 10.1016/j.tplants.2014.02.001. Epub 2014 Mar 14.
6
Stomatal development in Arabidopsis.
Arabidopsis Book. 2013 Jun 6;11:e0162. doi: 10.1199/tab.0162. Print 2013.
7
Differential effects of the peptides Stomagen, EPF1 and EPF2 on activation of MAP kinase MPK6 and the SPCH protein level.
Plant Cell Physiol. 2013 Aug;54(8):1253-62. doi: 10.1093/pcp/pct076. Epub 2013 May 17.
8
Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response.
Plant Physiol. 2013 Feb;161(2):942-53. doi: 10.1104/pp.112.209791. Epub 2012 Nov 26.
10
Mechanisms of stomatal development.
Annu Rev Plant Biol. 2012;63:591-614. doi: 10.1146/annurev-arplant-042811-105451. Epub 2012 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验