Suppr超能文献

[放射学中的机器学习:从个体时间点到轨迹的术语]

[Machine learning in radiology : Terminology from individual timepoint to trajectory].

作者信息

Langs Georg, Attenberger Ulrike, Licandro Roxane, Hofmanninger Johannes, Perkonigg Matthias, Zusag Mario, Röhrich Sebastian, Sobotka Daniel, Prosch Helmut

机构信息

Universitätsklinik für Radiologie und Nuklearmedizin, Computational Imaging Research Lab, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.

Universitätsklinik für Radiologie, Universitätsklinikum Bonn, Bonn, Deutschland.

出版信息

Radiologe. 2020 Jan;60(1):6-14. doi: 10.1007/s00117-019-00624-x.

Abstract

METHODICAL ISSUE

Machine learning (ML) algorithms have an increasingly relevant role in radiology tackling tasks such as the automatic detection and segmentation of diagnosis-relevant markers, the quantification of progression and response, and their prediction in individual patients.

STANDARD RADIOLOGICAL METHODS

ML algorithms are relevant for all image acquisition techniques from computed tomography (CT) and magnetic resonance imaging (MRI) to ultrasound. However, different modalities result in different challenges with respect to standardization and variability.

METHODICAL INNOVATIONS

ML algorithms are increasingly able to analyze longitudinal data for the training of prediction models. This is relevant since it enables the use of comprehensive information for predicting individual progression and response, and the associated support of treatment decisions by ML models.

PERFORMANCE

The quality of detection and segmentation algorithms of lesions has reached an acceptable level in several areas. The accuracy of prediction models is still increasing, but is dependent on the availability of representative training data.

ACHIEVEMENTS

The development of ML algorithms in radiology is progressing although many solutions are still at a validation stage. It is accompanied by a parallel and increasingly interlinked development of basic methods and techniques which will gradually be put into practice in radiology.

PRACTICAL CONSIDERATIONS

Two factors will impact the relevance of ML in radiological practice: the thorough validation of algorithms and solutions, and the creation of representative diverse data for the training and validation in a realistic context.

摘要

方法学问题

机器学习(ML)算法在放射学中发挥着越来越重要的作用,可处理诸如自动检测和分割与诊断相关的标志物、量化病情进展和反应以及预测个体患者情况等任务。

标准放射学方法

ML算法与从计算机断层扫描(CT)、磁共振成像(MRI)到超声的所有图像采集技术都相关。然而,不同的模态在标准化和变异性方面带来了不同的挑战。

方法学创新

ML算法越来越能够分析纵向数据以训练预测模型。这很重要,因为它能够利用全面信息来预测个体的病情进展和反应,并通过ML模型为治疗决策提供相关支持。

性能

病变检测和分割算法的质量在多个领域已达到可接受水平。预测模型的准确性仍在提高,但取决于代表性训练数据的可用性。

成果

放射学中ML算法的开发正在推进,尽管许多解决方案仍处于验证阶段。与此同时,基础方法和技术也在并行且日益相互关联地发展,这些将逐步在放射学中付诸实践。

实际考量

两个因素将影响ML在放射学实践中的相关性:算法和解决方案的全面验证,以及在现实环境中为训练和验证创建具有代表性的多样化数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验