Suppr超能文献

基于T1、T2和质子密度加权磁共振成像的随机森林脑白质高信号重建

RANDOM FOREST FLAIR RECONSTRUCTION FROM , , AND -WEIGHTED MRI.

作者信息

Jog Amod, Carass Aaron, Pham Dzung L, Prince Jerry L

机构信息

Image Analysis and Communications Laboratory, The Johns Hopkins University.

Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2014 May;2014:1079-1082. doi: 10.1109/ISBI.2014.6868061.

Abstract

Fluid Attenuated Inversion Recovery (FLAIR) is a commonly acquired pulse sequence for multiple sclerosis (MS) patients. MS white matter lesions appear hyperintense in FLAIR images and have excellent contrast with the surrounding tissue. Hence, FLAIR images are commonly used in automated lesion segmentation algorithms to easily and quickly delineate the lesions. This expedites the lesion load computation and correlation with disease progression. Unfortunately for numerous reasons the acquired FLAIR images can be of a poor quality and suffer from various artifacts. In the most extreme cases the data is absent, which poses a problem when consistently processing a large data set. We propose to fill in this gap by reconstructing a FLAIR image given the corresponding -weighted, -weighted, and -weighted images of the same subject using random forest regression. We show that the images we produce are similar to true high quality FLAIR images and also provide a good surrogate for tissue segmentation.

摘要

液体衰减反转恢复(FLAIR)是多发性硬化症(MS)患者常用的一种脉冲序列。MS白质病变在FLAIR图像中表现为高信号,与周围组织有良好的对比度。因此,FLAIR图像常用于自动病变分割算法,以轻松快速地勾勒出病变。这加快了病变负荷的计算以及与疾病进展的相关性。不幸的是,由于多种原因,获取的FLAIR图像质量可能很差,并存在各种伪影。在最极端的情况下,数据缺失,这在持续处理大数据集时会带来问题。我们建议通过使用随机森林回归,根据同一受试者的相应T1加权、T2加权和质子密度加权图像重建FLAIR图像来填补这一空白。我们表明,我们生成的图像与真正的高质量FLAIR图像相似,并且也为组织分割提供了良好的替代。

相似文献

1
RANDOM FOREST FLAIR RECONSTRUCTION FROM , , AND -WEIGHTED MRI.
Proc IEEE Int Symp Biomed Imaging. 2014 May;2014:1079-1082. doi: 10.1109/ISBI.2014.6868061.
6
Whole volume brain extraction for multi-centre, multi-disease FLAIR MRI datasets.
Magn Reson Imaging. 2020 Feb;66:116-130. doi: 10.1016/j.mri.2019.08.022. Epub 2019 Aug 28.
7
MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation?
Neuroimage Clin. 2016 Nov 20;13:264-270. doi: 10.1016/j.nicl.2016.11.020. eCollection 2017.
9
Diagnostic value of 3D fluid attenuated inversion recovery sequence in multiple sclerosis.
Acta Radiol. 2015 May;56(5):622-7. doi: 10.1177/0284185114534413. Epub 2014 May 27.
10
Lesion segmentation from multimodal MRI using random forest following ischemic stroke.
Neuroimage. 2014 Sep;98:324-35. doi: 10.1016/j.neuroimage.2014.04.056. Epub 2014 May 2.

引用本文的文献

1
Multi-Modal Brain Tumor Data Completion Based on Reconstruction Consistency Loss.
J Digit Imaging. 2023 Aug;36(4):1794-1807. doi: 10.1007/s10278-022-00697-6. Epub 2023 Mar 1.
2
PTNet3D: A 3D High-Resolution Longitudinal Infant Brain MRI Synthesizer Based on Transformers.
IEEE Trans Med Imaging. 2022 Oct;41(10):2925-2940. doi: 10.1109/TMI.2022.3174827. Epub 2022 Sep 30.
5
Dual-core steered non-rigid registration for multi-modal images via bi-directional image synthesis.
Med Image Anal. 2017 Oct;41:18-31. doi: 10.1016/j.media.2017.05.004. Epub 2017 May 13.
6
Cross contrast multi-channel image registration using image synthesis for MR brain images.
Med Image Anal. 2017 Feb;36:2-14. doi: 10.1016/j.media.2016.10.005. Epub 2016 Oct 22.
7
Random forest regression for magnetic resonance image synthesis.
Med Image Anal. 2017 Jan;35:475-488. doi: 10.1016/j.media.2016.08.009. Epub 2016 Aug 31.
8
Estimating CT Image From MRI Data Using Structured Random Forest and Auto-Context Model.
IEEE Trans Med Imaging. 2016 Jan;35(1):174-83. doi: 10.1109/TMI.2015.2461533. Epub 2015 Jul 28.
9
MR image synthesis by contrast learning on neighborhood ensembles.
Med Image Anal. 2015 Aug;24(1):63-76. doi: 10.1016/j.media.2015.05.002. Epub 2015 May 18.

本文引用的文献

1
Intensity Inhomogeneity Correction of Magnetic Resonance Images using Patches.
Proc SPIE Int Soc Opt Eng. 2011 Mar 11;7962:79621F. doi: 10.1117/12.877466.
2
Example-based restoration of high-resolution magnetic resonance image acquisitions.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):131-8. doi: 10.1007/978-3-642-40811-3_17.
3
MAGNETIC RESONANCE IMAGE SYNTHESIS THROUGH PATCH REGRESSION.
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:350-353. doi: 10.1109/ISBI.2013.6556484.
4
A compressed sensing approach for MR tissue contrast synthesis.
Inf Process Med Imaging. 2011;22:371-83. doi: 10.1007/978-3-642-22092-0_31.
5
MR CONTRAST SYNTHESIS FOR LESION SEGMENTATION.
Proc IEEE Int Symp Biomed Imaging. 2010 Jun 21;2010:932-935. doi: 10.1109/ISBI.2010.5490140.
6
Synthesizing MR Contrast and Resolution through a Patch Matching Technique.
Proc SPIE Int Soc Opt Eng. 2010;7623:76230j. doi: 10.1117/12.844575.
7
A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions.
Neuroimage. 2010 Jan 15;49(2):1524-35. doi: 10.1016/j.neuroimage.2009.09.005. Epub 2009 Sep 17.
8
Gray matter atrophy in multiple sclerosis: a longitudinal study.
Ann Neurol. 2008 Sep;64(3):255-65. doi: 10.1002/ana.21436.
9
Hyperintensity in the subarachnoid space on FLAIR MRI.
AJR Am J Roentgenol. 2007 Oct;189(4):913-21. doi: 10.2214/AJR.07.2424.
10
Image quality assessment: from error visibility to structural similarity.
IEEE Trans Image Process. 2004 Apr;13(4):600-12. doi: 10.1109/tip.2003.819861.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验