Jog Amod, Carass Aaron, Pham Dzung L, Prince Jerry L
Image Analysis and Communications Laboratory, The Johns Hopkins University.
Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine.
Proc IEEE Int Symp Biomed Imaging. 2014 May;2014:1079-1082. doi: 10.1109/ISBI.2014.6868061.
Fluid Attenuated Inversion Recovery (FLAIR) is a commonly acquired pulse sequence for multiple sclerosis (MS) patients. MS white matter lesions appear hyperintense in FLAIR images and have excellent contrast with the surrounding tissue. Hence, FLAIR images are commonly used in automated lesion segmentation algorithms to easily and quickly delineate the lesions. This expedites the lesion load computation and correlation with disease progression. Unfortunately for numerous reasons the acquired FLAIR images can be of a poor quality and suffer from various artifacts. In the most extreme cases the data is absent, which poses a problem when consistently processing a large data set. We propose to fill in this gap by reconstructing a FLAIR image given the corresponding -weighted, -weighted, and -weighted images of the same subject using random forest regression. We show that the images we produce are similar to true high quality FLAIR images and also provide a good surrogate for tissue segmentation.
液体衰减反转恢复(FLAIR)是多发性硬化症(MS)患者常用的一种脉冲序列。MS白质病变在FLAIR图像中表现为高信号,与周围组织有良好的对比度。因此,FLAIR图像常用于自动病变分割算法,以轻松快速地勾勒出病变。这加快了病变负荷的计算以及与疾病进展的相关性。不幸的是,由于多种原因,获取的FLAIR图像质量可能很差,并存在各种伪影。在最极端的情况下,数据缺失,这在持续处理大数据集时会带来问题。我们建议通过使用随机森林回归,根据同一受试者的相应T1加权、T2加权和质子密度加权图像重建FLAIR图像来填补这一空白。我们表明,我们生成的图像与真正的高质量FLAIR图像相似,并且也为组织分割提供了良好的替代。