Suppr超能文献

临床研究中使用的近红外荧光成像设备的性能综述。

A review of performance of near-infrared fluorescence imaging devices used in clinical studies.

作者信息

Zhu B, Sevick-Muraca E M

机构信息

Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA.

出版信息

Br J Radiol. 2015 Jan;88(1045):20140547. doi: 10.1259/bjr.20140547.

Abstract

Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new "point-of-care" medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies.

摘要

近红外荧光(NIRF)分子成像作为一种新的“床旁”医学成像模式具有巨大潜力,它有可能提供核医学技术的灵敏度,但不存在可能限制其使用的放射性。最近,市场上出现了各种设计的NIRF成像设备,并且在研究性临床研究中使用吲哚菁绿(ICG)作为非靶向NIRF造影剂,以非侵入性和术中方式标记血液和淋巴管系统。自1956年在美国获批静脉给药以来,ICG最近已被用于非标签的皮内或皮下给药,用于淋巴管系统和淋巴结的荧光成像。在此,我们总结了各种设计的设备,以表格形式总结它们在淋巴成像中的性能,并评论为制定设备性能标准所必需的努力,以便在未来的NIRF分子成像研究中比较和使用这些新兴设备。

相似文献

1
A review of performance of near-infrared fluorescence imaging devices used in clinical studies.
Br J Radiol. 2015 Jan;88(1045):20140547. doi: 10.1259/bjr.20140547.
2
Targeted Near-Infrared Fluorescence Imaging of Atherosclerosis: Clinical and Intracoronary Evaluation of Indocyanine Green.
JACC Cardiovasc Imaging. 2016 Sep;9(9):1087-1095. doi: 10.1016/j.jcmg.2016.01.034. Epub 2016 Aug 17.
3
Translation of near-infrared fluorescence imaging technologies: emerging clinical applications.
Annu Rev Med. 2012;63:217-31. doi: 10.1146/annurev-med-070910-083323. Epub 2011 Oct 27.
6
Near-Infrared Fluorescence Imaging in Humans with Indocyanine Green: A Review and Update.
Open Surg Oncol J. 2010;2(2):12-25. doi: 10.2174/1876504101002010012.
8
Comparison of NIR Versus SWIR Fluorescence Image Device Performance Using Working Standards Calibrated With SI Units.
IEEE Trans Med Imaging. 2020 Apr;39(4):944-951. doi: 10.1109/TMI.2019.2937760. Epub 2019 Aug 27.
9
Near-infrared operating lamp for intraoperative molecular imaging of a mediastinal tumor.
BMC Med Imaging. 2016 Feb 17;16:15. doi: 10.1186/s12880-016-0120-5.
10
A Validation Study of Near-Infrared Fluorescence Imaging of Lymphatic Vessels in Humans.
Lymphat Res Biol. 2017 Sep;15(3):227-234. doi: 10.1089/lrb.2016.0061. Epub 2017 Jul 27.

引用本文的文献

1
Optomechanical Properties of Swine Skin Tissue Treated With a Nontoxic Optical Clearing Agent.
J Biophotonics. 2025 Aug;18(8):e70007. doi: 10.1002/jbio.70007. Epub 2025 Mar 13.
2
Imaging and management of lymphedema in the era of precision oncology.
Br J Radiol. 2025 May 1;98(1169):619-629. doi: 10.1093/bjr/tqaf029.
3
Bright and Specific Targeting of Metastatic Lymph Nodes in Orthotopic Mouse Models of Gastric Cancer with a Fluorescent Anti-CEA Antibody.
Ann Surg Oncol. 2025 May;32(5):3796-3803. doi: 10.1245/s10434-025-16919-4. Epub 2025 Jan 29.
5
Optical molecular imaging technology and its application in precise surgical navigation of liver cancer.
Theranostics. 2025 Jan 1;15(3):1017-1034. doi: 10.7150/thno.102671. eCollection 2025.
6
Potential Probes for Targeted Intraoperative Fluorescence Imaging in Gastric Cancer.
Cancers (Basel). 2024 Dec 12;16(24):4141. doi: 10.3390/cancers16244141.
7
Non-invasive early-stage cancer detection: current methods and future perspectives.
Clin Exp Med. 2024 Dec 21;25(1):17. doi: 10.1007/s10238-024-01513-x.
8
State of the art medical devices for fluorescence-guided surgery (FGS): technical review and future developments.
Surg Endosc. 2024 Nov;38(11):6227-6236. doi: 10.1007/s00464-024-11236-5. Epub 2024 Sep 18.
9
Developments in the Use of Indocyanine Green (ICG) Fluorescence in Colorectal Surgery.
J Clin Med. 2024 Jul 9;13(14):4003. doi: 10.3390/jcm13144003.
10
Convolutional neural network advances in demosaicing for fluorescent cancer imaging with color-near-infrared sensors.
J Biomed Opt. 2024 Jul;29(7):076005. doi: 10.1117/1.JBO.29.7.076005. Epub 2024 Jul 23.

本文引用的文献

1
Deglycosylation of mAb by EndoS for improved molecular imaging.
Mol Imaging Biol. 2015 Apr;17(2):195-203. doi: 10.1007/s11307-014-0781-9.
2
Investigational lymphatic imaging at the bedside in a pediatric postoperative chylothorax patient.
Pediatr Cardiol. 2014 Oct;35(7):1295-300. doi: 10.1007/s00246-014-0946-y. Epub 2014 Jun 28.
4
Emerging lymphatic imaging technologies for mouse and man.
J Clin Invest. 2014 Mar;124(3):905-14. doi: 10.1172/JCI71612. Epub 2014 Mar 3.
6
Evaluation of lymphatic dysplasia in patients with congenital pleural effusion and ascites using indocyanine green lymphography.
J Pediatr. 2014 May;164(5):1116-1120.e1. doi: 10.1016/j.jpeds.2013.12.052. Epub 2014 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验