Suppr超能文献

为临床医生和患者提供实际预后情况:在存在多种死亡原因背景下的癌症。

Providing clinicians and patients with actual prognosis: cancer in the context of competing causes of death.

作者信息

Howlader Nadia, Mariotto Angela B, Woloshin Steven, Schwartz Lisa M

机构信息

Surveillance Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD (NH, AM); Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, NH, Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, Department of Veterans Affairs Medical Center, Veterans Affairs Outcomes Group, White River Junction, VT (SW, LMS).

出版信息

J Natl Cancer Inst Monogr. 2014 Nov;2014(49):255-64. doi: 10.1093/jncimonographs/lgu022.

Abstract

BACKGROUND

To isolate progress against cancer from changes in competing causes of death, population cancer registries have traditionally reported cancer prognosis (net measures). But clinicians and cancer patients generally want to understand actual prognosis (crude measures): the chance of surviving, dying from the specific cancer and from competing causes of death in a given time period.

OBJECTIVE

To compare cancer and actual prognosis in the United States for four leading cancers-lung, breast, prostate, and colon-by age, comorbidity, and cancer stage and to provide templates to help patients, clinicians, and researchers understand actual prognosis.

METHOD

Using population-based registry data from the Surveillance, Epidemiology, and End Results (SEER) Program, we calculated cancer prognosis (relative survival) and actual prognosis (five-year overall survival and the "crude" probability of dying from cancer and competing causes) for three important prognostic determinants (age, comorbidity [Charlson-score from 2012 SEER-Medicare linkage dataset] and cancer stage at diagnosis).

RESULT

For younger, healthier, and earlier stage cancer patients, cancer and actual prognosis estimates were quite similar. For older and sicker patients, these prognosis estimates differed substantially. For example, the five-year overall survival for an 85-year-old patient with colorectal cancer is 54% (cancer prognosis) versus 22% (actual prognosis)-the difference reflecting the patient's substantial chance of dying from competing causes. The corresponding five-year chances of dying from the patient's cancer are 46% versus 37%. Although age and comorbidity lowered actual prognosis, stage at diagnosis was the most powerful factor: The five-year chance of colon cancer death was 10% for localized stage and 83% for distant stage.

CONCLUSION

Both cancer and actual prognosis measures are important. Cancer registries should routinely report both cancer and actual prognosis to help clinicians and researchers understand the difference between these measures and what question they can and cannot answer. We encourage them to use formats like the ones presented in this paper to communicate them clearly.

摘要

背景

为了将癌症进展与其他竞争性死亡原因的变化区分开来,人口癌症登记处传统上报告癌症预后(净指标)。但临床医生和癌症患者通常想了解实际预后(粗略指标):在特定时间段内存活、死于特定癌症以及死于其他竞争性死亡原因的几率。

目的

按年龄、合并症和癌症分期比较美国四种主要癌症(肺癌、乳腺癌、前列腺癌和结肠癌)的癌症预后和实际预后,并提供模板以帮助患者、临床医生和研究人员了解实际预后。

方法

利用监测、流行病学和最终结果(SEER)计划基于人群的登记数据,我们计算了三种重要预后决定因素(年龄、合并症[来自2012年SEER - 医疗保险关联数据集的查尔森评分]和诊断时的癌症分期)的癌症预后(相对生存率)和实际预后(五年总生存率以及死于癌症和其他竞争性原因的“粗略”概率)。

结果

对于年轻、健康且处于早期阶段的癌症患者,癌症预后和实际预后估计相当相似。对于年老和病情较重的患者,这些预后估计差异很大。例如,一名85岁的结肠癌患者的五年总生存率为54%(癌症预后),而实际预后为22%——差异反映了患者死于其他竞争性原因的很大几率。患者死于癌症的相应五年几率分别为46%和37%。尽管年龄和合并症降低了实际预后,但诊断时的分期是最有力的因素:局部阶段结肠癌的五年死亡几率为10%,远处阶段为83%。

结论

癌症预后和实际预后指标都很重要。癌症登记处应常规报告癌症预后和实际预后,以帮助临床医生和研究人员了解这些指标之间的差异以及它们能回答和不能回答的问题。我们鼓励他们使用本文中呈现的格式来清晰地传达这些信息。

相似文献

1
Providing clinicians and patients with actual prognosis: cancer in the context of competing causes of death.
J Natl Cancer Inst Monogr. 2014 Nov;2014(49):255-64. doi: 10.1093/jncimonographs/lgu022.
4
Assessing non-cancer-related health status of US cancer patients: other-cause survival and comorbidity prevalence.
Am J Epidemiol. 2013 Aug 1;178(3):339-49. doi: 10.1093/aje/kws580. Epub 2013 Jul 3.
5
Impact of comorbidity on survival among men with localized prostate cancer.
J Clin Oncol. 2011 Apr 1;29(10):1335-41. doi: 10.1200/JCO.2010.31.2330. Epub 2011 Feb 28.
7
Noncancer deaths in white adult cancer patients.
J Natl Cancer Inst. 1993 Jun 16;85(12):979-87. doi: 10.1093/jnci/85.12.979.
9
Cumulative cause-specific mortality for cancer patients in the presence of other causes: a crude analogue of relative survival.
Stat Med. 2000 Jul 15;19(13):1729-40. doi: 10.1002/1097-0258(20000715)19:13<1729::aid-sim484>3.0.co;2-9.

引用本文的文献

3
Assessing the effect of the COVID-19 pandemic on 1-year cancer survival in the United States.
J Natl Cancer Inst. 2025 May 1;117(5):1064-1068. doi: 10.1093/jnci/djae271.
5
Squamous cell carcinoma of the urinary bladder in patients with chronic spinal cord injury: A case series.
Spinal Cord Ser Cases. 2024 Sep 14;10(1):67. doi: 10.1038/s41394-024-00680-z.
6
Time-varying associations of patient and tumor characteristics with cancer survival: an analysis of SEER data across 14 cancer sites, 2004-2017.
Cancer Causes Control. 2024 Oct;35(10):1393-1405. doi: 10.1007/s10552-024-01888-y. Epub 2024 May 29.
7
Overall survival analyses of female malignancies in Southern Brazil during 2008-2017: A closer look at breast, cervical and ovarian cancer.
Dialogues Health. 2022 May 18;1:100010. doi: 10.1016/j.dialog.2022.100010. eCollection 2022 Dec.
10
Prediction of Risk of Metastatic Recurrence for Female Breast Cancer Patients in the Presence of Competing Causes of Death.
Cancer Epidemiol Biomarkers Prev. 2023 Dec 1;32(12):1683-1689. doi: 10.1158/1055-9965.EPI-23-0544.

本文引用的文献

2
The Surveillance, Epidemiology, and End Results Cancer Survival Calculator SEER*CSC: validation in a managed care setting.
J Natl Cancer Inst Monogr. 2014 Nov;2014(49):265-74. doi: 10.1093/jncimonographs/lgu021.
3
Individualized estimates of overdiagnosis in screen-detected prostate cancer.
J Natl Cancer Inst. 2014 Feb;106(2):djt367. doi: 10.1093/jnci/djt367. Epub 2014 Jan 7.
5
Life tables adjusted for comorbidity more accurately estimate noncancer survival for recently diagnosed cancer patients.
J Clin Epidemiol. 2013 Dec;66(12):1376-85. doi: 10.1016/j.jclinepi.2013.07.002. Epub 2013 Sep 10.
6
Predicting cancer prognosis using interactive online tools: a systematic review and implications for cancer care providers.
Cancer Epidemiol Biomarkers Prev. 2013 Oct;22(10):1645-56. doi: 10.1158/1055-9965.EPI-13-0513. Epub 2013 Aug 16.
7
Assessing non-cancer-related health status of US cancer patients: other-cause survival and comorbidity prevalence.
Am J Epidemiol. 2013 Aug 1;178(3):339-49. doi: 10.1093/aje/kws580. Epub 2013 Jul 3.
10
Impact of comorbidity on survival among men with localized prostate cancer.
J Clin Oncol. 2011 Apr 1;29(10):1335-41. doi: 10.1200/JCO.2010.31.2330. Epub 2011 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验