Okubara Patricia A, Dickman Martin B, Blechl Ann E
USDA-ARS, Root Disease and Biological Control Research Unit, Pullman, WA, 99164-6430, USA.
Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843-2123, USA.
Plant Sci. 2014 Nov;228:61-70. doi: 10.1016/j.plantsci.2014.02.001. Epub 2014 Feb 12.
The soilborne necrotrophic pathogens Rhizoctonia and Pythium infect a wide range of crops in the US and worldwide. These pathogens pose challenges to growers because the diseases they cause are not adequately controlled by fungicides, rotation or, for many hosts, natural genetic resistance. Although a combination of management practices are likely to be required for control of Rhizoctonia and Pythium, genetic resistance remains a key missing component. This review discusses the recent deployment of introduced genes and genome-based information for control of Rhizoctonia, with emphasis on three pathosystems: Rhizoctonia solani AG8 and wheat, R. solani AG1-IA and rice, and R. solani AG3 or AG4 and potato. Molecular mechanisms underlying disease suppression will be addressed, if appropriate. Although less is known about genes and factors suppressive to Pythium, pathogen genomics and biological control studies are providing useful leads to effectors and antifungal factors. Prospects for resistance to Rhizoctonia and Pythium spp. will continue to improve with growing knowledge of pathogenicity strategies, host defense gene action relative to the pathogen infection process, and the role of environmental factors on pathogen-host interactions.
土传坏死营养型病原菌立枯丝核菌和腐霉菌在美国及全球范围内感染多种作物。这些病原菌给种植者带来了挑战,因为它们所引发的病害无法通过杀菌剂、轮作或(对于许多寄主而言)天然遗传抗性得到有效控制。尽管控制立枯丝核菌和腐霉菌可能需要综合运用多种管理措施,但遗传抗性仍是一个关键的缺失要素。本综述讨论了为控制立枯丝核菌而引入的基因和基于基因组信息的最新应用情况,重点关注三个病害系统:立枯丝核菌AG8与小麦、立枯丝核菌AG1-IA与水稻、立枯丝核菌AG3或AG4与马铃薯。如有合适的情况,将阐述病害抑制的分子机制。尽管对于抑制腐霉菌的基因和因子了解较少,但病原菌基因组学和生物防治研究正在为效应子和抗真菌因子提供有用线索。随着对致病性策略、寄主防御基因在病原菌感染过程中的作用以及环境因素在病原菌-寄主相互作用中的角色的认识不断加深,对抗立枯丝核菌和腐霉菌的前景将持续改善。