Suppr超能文献

夫西地酸在细菌核糖体上的转位几个阶段中作用于延伸因子G。

Fusidic acid targets elongation factor G in several stages of translocation on the bacterial ribosome.

作者信息

Borg Anneli, Holm Mikael, Shiroyama Ikue, Hauryliuk Vasili, Pavlov Michael, Sanyal Suparna, Ehrenberg Måns

机构信息

From the Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 751 24 Uppsala, Sweden and 3H Biomedical AB, Dag Hammarskjölds Väg 34A, Uppsala Science Park, 751 83 Uppsala, Sweden.

From the Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, 751 24 Uppsala, Sweden and.

出版信息

J Biol Chem. 2015 Feb 6;290(6):3440-54. doi: 10.1074/jbc.M114.611608. Epub 2014 Dec 1.

Abstract

The antibiotic fusidic acid (FA) targets elongation factor G (EF-G) and inhibits ribosomal peptide elongation and ribosome recycling, but deeper mechanistic aspects of FA action have remained unknown. Using quench flow and stopped flow experiments in a biochemical system for protein synthesis and taking advantage of separate time scales for inhibited (10 s) and uninhibited (100 ms) elongation cycles, a detailed kinetic model of FA action was obtained. FA targets EF-G at an early stage in the translocation process (I), which proceeds unhindered by the presence of the drug to a later stage (II), where the ribosome stalls. Stalling may also occur at a third stage of translocation (III), just before release of EF-G from the post-translocation ribosome. We show that FA is a strong elongation inhibitor (K50% ≈ 1 μm), discuss the identity of the FA targeted states, and place existing cryo-EM and crystal structures in their functional context.

摘要

抗生素夫西地酸(FA)作用于延伸因子G(EF-G),抑制核糖体肽链延伸和核糖体循环,但FA作用的更深层次机制仍不清楚。利用蛋白质合成生化系统中的淬灭流动和停流实验,并利用受抑制(10秒)和未受抑制(100毫秒)延伸循环的不同时间尺度,获得了FA作用的详细动力学模型。FA在转位过程的早期阶段(I)靶向EF-G,药物的存在并不阻碍其进行到后期阶段(II),此时核糖体会停滞。停滞也可能发生在转位的第三个阶段(III),就在EF-G从转位后核糖体释放之前。我们表明FA是一种强效延伸抑制剂(K50%≈1μm),讨论了FA靶向状态的特性,并将现有的冷冻电镜和晶体结构置于其功能背景中。

相似文献

1
Fusidic acid targets elongation factor G in several stages of translocation on the bacterial ribosome.
J Biol Chem. 2015 Feb 6;290(6):3440-54. doi: 10.1074/jbc.M114.611608. Epub 2014 Dec 1.
2
Mechanism of fusidic acid inhibition of RRF- and EF-G-dependent splitting of the bacterial post-termination ribosome.
Nucleic Acids Res. 2016 Apr 20;44(7):3264-75. doi: 10.1093/nar/gkw178. Epub 2016 Mar 21.
8
Release of ribosome-bound ribosome recycling factor by elongation factor G.
J Biol Chem. 2003 Nov 28;278(48):48041-50. doi: 10.1074/jbc.M304834200. Epub 2003 Sep 5.
9
EF-G-dependent GTPase on the ribosome. conformational change and fusidic acid inhibition.
Biochemistry. 2006 Feb 28;45(8):2504-14. doi: 10.1021/bi0516677.
10
Staphylococcus aureus elongation factor G--structure and analysis of a target for fusidic acid.
FEBS J. 2010 Sep;277(18):3789-803. doi: 10.1111/j.1742-4658.2010.07780.x. Epub 2010 Aug 13.

引用本文的文献

1
Structural mechanism of FusB-mediated rescue from fusidic acid inhibition of protein synthesis.
Nat Commun. 2025 Apr 18;16(1):3693. doi: 10.1038/s41467-025-58902-3.
4
Reversing the Natural Drug Resistance of Gram-Negative Bacteria to Fusidic Acid via Forming Drug-Phospholipid Complex.
Bioengineering (Basel). 2024 Feb 11;11(2):177. doi: 10.3390/bioengineering11020177.
6
Development and characterization of niosomal gel of fusidic acid: in-vitro and ex-vivo approaches.
Des Monomers Polym. 2022 Jun 9;25(1):165-174. doi: 10.1080/15685551.2022.2086411. eCollection 2022.
7
The cyclic octapeptide antibiotic argyrin B inhibits translation by trapping EF-G on the ribosome during translocation.
Proc Natl Acad Sci U S A. 2022 May 10;119(19):e2114214119. doi: 10.1073/pnas.2114214119. Epub 2022 May 2.
8
Bioactivities and Structure-Activity Relationships of Fusidic Acid Derivatives: A Review.
Front Pharmacol. 2021 Oct 15;12:759220. doi: 10.3389/fphar.2021.759220. eCollection 2021.
9
Structural basis of early translocation events on the ribosome.
Nature. 2021 Jul;595(7869):741-745. doi: 10.1038/s41586-021-03713-x. Epub 2021 Jul 7.
10
Mechanistic insights into translation inhibition by aminoglycoside antibiotic arbekacin.
Nucleic Acids Res. 2021 Jul 9;49(12):6880-6892. doi: 10.1093/nar/gkab495.

本文引用的文献

1
Ribosome-targeting antibiotics and mechanisms of bacterial resistance.
Nat Rev Microbiol. 2014 Jan;12(1):35-48. doi: 10.1038/nrmicro3155.
2
Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation.
Proc Natl Acad Sci U S A. 2013 Dec 24;110(52):20964-9. doi: 10.1073/pnas.1320387110. Epub 2013 Dec 9.
3
Coordinated conformational and compositional dynamics drive ribosome translocation.
Nat Struct Mol Biol. 2013 Jun;20(6):718-27. doi: 10.1038/nsmb.2567. Epub 2013 Apr 28.
4
Identification of enzyme inhibitory mechanisms from steady-state kinetics.
Biochimie. 2011 Sep;93(9):1623-9. doi: 10.1016/j.biochi.2011.05.031. Epub 2011 Jun 12.
5
The structure of the ribosome with elongation factor G trapped in the posttranslocational state.
Science. 2009 Oct 30;326(5953):694-9. doi: 10.1126/science.1179709.
6
Distinct functions of elongation factor G in ribosome recycling and translocation.
RNA. 2009 May;15(5):772-80. doi: 10.1261/rna.1592509. Epub 2009 Mar 26.
7
The kinetics of ribosomal peptidyl transfer revisited.
Mol Cell. 2008 Jun 6;30(5):589-98. doi: 10.1016/j.molcel.2008.04.010.
8
Role and timing of GTP binding and hydrolysis during EF-G-dependent tRNA translocation on the ribosome.
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13670-5. doi: 10.1073/pnas.0606099103. Epub 2006 Aug 29.
9
Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation.
Annu Rev Biochem. 2005;74:649-79. doi: 10.1146/annurev.biochem.74.082803.133130.
10
Splitting of the posttermination ribosome into subunits by the concerted action of RRF and EF-G.
Mol Cell. 2005 Jun 10;18(6):675-86. doi: 10.1016/j.molcel.2005.05.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验