Bernabò Nicola, Ordinelli Alessandra, Di Agostino Raffaele, Mattioli Mauro, Barboni Barbara
Faculty of Veterinary Medicine, University of Teramo , Teramo, Italy .
OMICS. 2014 Dec;18(12):740-53. doi: 10.1089/omi.2014.0128.
The rapid growth of published literature makes biomedical text mining increasingly invaluable for unpacking implicit knowledge hidden in unstructured text. We employed biomedical text mining and biological networks analyses to research the process of sperm egg recognition and binding (SERB). We selected from the literature the molecules expressed either on spermatozoa or on oocytes thought to be involved in SERB and, using an automated literature search software (Agilent Literature Search), we realized a network, SERBN, characterized by a hierarchical scale free and a small world topology. We used an integrated approach, either based on selection of hubs or by a cluster analysis, to discern the key molecules of SERB. We found that in most cases some of them are not directly situated on spermatozoa and oocyte, but are dispersed in oviductal fluid or embedded in exosomes present in the perivitelline space. To confirm and validate our results, we performed further analyses using STRING and Reactome FI software. Our findings underscore that the fertility is not a property of gametes in isolation, but rather depends on the functional integrity of the entire reproductive system. These observations collectively underscore the importance of integrative biology in exploring biological systems and in rethinking of fertility mechanisms in the light of this innovative approach.
已发表文献的快速增长使得生物医学文本挖掘对于揭示隐藏在非结构化文本中的隐性知识变得越来越重要。我们采用生物医学文本挖掘和生物网络分析来研究精卵识别与结合(SERB)过程。我们从文献中挑选出被认为参与SERB的精子或卵母细胞上表达的分子,并使用自动文献搜索软件(安捷伦文献搜索)构建了一个具有分层无标度和小世界拓扑结构的网络——SERBN。我们采用基于枢纽选择或聚类分析的综合方法来识别SERB的关键分子。我们发现,在大多数情况下,其中一些分子并非直接位于精子和卵母细胞上,而是分散在输卵管液中或存在于卵周隙中的外泌体中。为了证实和验证我们的结果,我们使用STRING和Reactome FI软件进行了进一步分析。我们的研究结果强调,生育能力并非孤立配子的特性,而是取决于整个生殖系统的功能完整性。这些观察结果共同强调了整合生物学在探索生物系统以及根据这种创新方法重新思考生育机制方面的重要性。