Suppr超能文献

通过基因工程融合蛋白控制硅化作用:丝-二氧化硅结合肽

Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.

作者信息

Zhou Shun, Huang Wenwen, Belton David J, Simmons Leo O, Perry Carole C, Wang Xiaoqin, Kaplan David L

机构信息

National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China; Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.

Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA.

出版信息

Acta Biomater. 2015 Mar;15:173-80. doi: 10.1016/j.actbio.2014.10.040. Epub 2014 Nov 4.

Abstract

In the present study, an artificial spider silk gene, 6mer, derived from the consensus sequence of Nephila clavipes dragline silk gene, was fused with different silica-binding peptides (SiBPs), A1, A3 and R5, to study the impact of the fusion protein sequence chemistry on silica formation and the ability to generate a silk-silica composite in two different bioinspired silicification systems: solution-solution and solution-solid. Condensed silica nanoscale particles (600-800 nm) were formed in the presence of the recombinant silk and chimeras, which were smaller than those formed by 15mer-SiBP chimeras, revealing that the molecular weight of the silk domain correlated to the sizes of the condensed silica particles in the solution system. In addition, the chimeras (6mer-A1/A3/R5) produced smaller condensed silica particles than the control (6mer), revealing that the silica particle size formed in the solution system is controlled by the size of protein assemblies in solution. In the solution-solid interface system, silicification reactions were performed on the surface of films fabricated from the recombinant silk proteins and chimeras and then treated to induce β-sheet formation. A higher density of condensed silica formed on the films containing the lowest β-sheet content while the films with the highest β-sheet content precipitated the lowest density of silica, revealing an inverse correlation between the β-sheet secondary structure and the silica content formed on the films. Intriguingly, the 6mer-A3 showed the highest rate of silica condensation but the lowest density of silica deposition on the films, compared with 6mer-A1 and -R5, revealing antagonistic crosstalk between the silk and the SiBP domains in terms of protein assembly. These findings offer a path forward in the tailoring of biopolymer-silica composites for biomaterial related needs.

摘要

在本研究中,将源自金蛛(Nephila clavipes)拖牵丝基因共有序列的人工蜘蛛丝基因6mer与不同的硅结合肽(SiBPs)A1、A3和R5融合,以研究融合蛋白序列化学对二氧化硅形成的影响,以及在两种不同的仿生硅化系统(溶液-溶液和溶液-固体)中生成丝-二氧化硅复合材料的能力。在重组丝和嵌合体存在的情况下形成了凝聚态的纳米级二氧化硅颗粒(600-800纳米),这些颗粒比由15mer-SiBP嵌合体形成的颗粒小,这表明丝结构域的分子量与溶液系统中凝聚态二氧化硅颗粒的大小相关。此外,嵌合体(6mer-A1/A3/R5)产生的凝聚态二氧化硅颗粒比对照(6mer)小,这表明溶液系统中形成的二氧化硅颗粒大小受溶液中蛋白质聚集体大小的控制。在溶液-固体界面系统中,在由重组丝蛋白和嵌合体制成的薄膜表面进行硅化反应,然后进行处理以诱导β-折叠的形成。在β-折叠含量最低的薄膜上形成了更高密度的凝聚态二氧化硅,而β-折叠含量最高的薄膜沉淀出最低密度的二氧化硅,这表明β-折叠二级结构与薄膜上形成的二氧化硅含量之间呈负相关。有趣的是,与6mer-A1和-R5相比,6mer-A3在薄膜上显示出最高的二氧化硅凝聚速率,但二氧化硅沉积密度最低,这表明在蛋白质组装方面,丝和SiBP结构域之间存在拮抗相互作用。这些发现为针对生物材料相关需求定制生物聚合物-二氧化硅复合材料提供了一条前进的道路。

相似文献

1
Control of silicification by genetically engineered fusion proteins: silk-silica binding peptides.
Acta Biomater. 2015 Mar;15:173-80. doi: 10.1016/j.actbio.2014.10.040. Epub 2014 Nov 4.
3
Novel nanocomposites from spider silk-silica fusion (chimeric) proteins.
Proc Natl Acad Sci U S A. 2006 Jun 20;103(25):9428-33. doi: 10.1073/pnas.0601096103. Epub 2006 Jun 12.
5
Influence of silk-silica fusion protein design on silica condensation and cellular calcification.
RSC Adv. 2016 Jan 1;6(26):21776-21788. doi: 10.1039/C6RA03706B. Epub 2016 Feb 17.
6
The effect of genetically engineered spider silk-dentin matrix protein 1 chimeric protein on hydroxyapatite nucleation.
Biomaterials. 2007 May;28(14):2358-67. doi: 10.1016/j.biomaterials.2006.11.021. Epub 2007 Feb 7.
7
Effect of the silica nanoparticle size on the osteoinduction of biomineralized silk-silica nanocomposites.
Acta Biomater. 2021 Jan 15;120:203-212. doi: 10.1016/j.actbio.2020.10.043. Epub 2020 Nov 4.
8
AFM study of morphology and mechanical properties of a chimeric spider silk and bone sialoprotein protein for bone regeneration.
Biomacromolecules. 2011 May 9;12(5):1675-85. doi: 10.1021/bm2000605. Epub 2011 Mar 31.
9
Silk-Based Antimicrobial Polymers as a New Platform to Design Drug-Free Materials to Impede Microbial Infections.
Macromol Biosci. 2018 Dec;18(12):e1800262. doi: 10.1002/mabi.201800262. Epub 2018 Nov 8.
10
RGD-functionalized bioengineered spider dragline silk biomaterial.
Biomacromolecules. 2006 Nov;7(11):3139-45. doi: 10.1021/bm0607877.

引用本文的文献

2
Advanced silk materials for musculoskeletal tissue regeneration.
Front Bioeng Biotechnol. 2023 May 2;11:1199507. doi: 10.3389/fbioe.2023.1199507. eCollection 2023.
3
Molecular simulations of the interfacial properties in silk-hydroxyapatite composites.
Nanoscale. 2022 Aug 4;14(30):10929-10939. doi: 10.1039/d2nr01989b.
4
A Redox-Based Autoinduction Strategy to Facilitate Expression of 5xCys-Tagged Proteins for Electrobiofabrication.
Front Microbiol. 2021 Jun 18;12:675729. doi: 10.3389/fmicb.2021.675729. eCollection 2021.
5
Effect of the silica nanoparticle size on the osteoinduction of biomineralized silk-silica nanocomposites.
Acta Biomater. 2021 Jan 15;120:203-212. doi: 10.1016/j.actbio.2020.10.043. Epub 2020 Nov 4.
6
Expanding Canonical Spider Silk Properties through a DNA Combinatorial Approach.
Materials (Basel). 2020 Aug 14;13(16):3596. doi: 10.3390/ma13163596.
7
Design, Fabrication, and Function of Silk-Based Nanomaterials.
Adv Funct Mater. 2018 Dec 27;28(52). doi: 10.1002/adfm.201805305. Epub 2018 Nov 12.
8
Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk-silica Chimeras.
Adv Funct Mater. 2018 Jul 4;28(27). doi: 10.1002/adfm.201702570. Epub 2017 Sep 4.
9
[Silicification of silk fibroin and their application in bone tissue engineering].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2018 Aug 25;35(4):643-646. doi: 10.7507/1001-5515.201705029.
10
3D freeform printing of silk fibroin.
Acta Biomater. 2018 Apr 15;71:379-387. doi: 10.1016/j.actbio.2018.02.035. Epub 2018 Mar 15.

本文引用的文献

1
Bioengineered functional brain-like cortical tissue.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13811-6. doi: 10.1073/pnas.1324214111. Epub 2014 Aug 11.
2
Hydrophobic drug-triggered self-assembly of nanoparticles from silk-elastin-like protein polymers for drug delivery.
Biomacromolecules. 2014 Mar 10;15(3):908-14. doi: 10.1021/bm4017594. Epub 2014 Feb 21.
3
Corneal stromal bioequivalents secreted on patterned silk substrates.
Biomaterials. 2014 Apr;35(12):3744-55. doi: 10.1016/j.biomaterials.2013.12.078. Epub 2014 Feb 3.
4
Slowly degradable porous silk microfabricated scaffolds for vascularized tissue formation.
Adv Funct Mater. 2013 Jul 19;23(27):3404-3412. doi: 10.1002/adfm.201202926.
5
Heat Capacity of Spider Silk-like Block Copolymers.
Macromolecules. 2011 Jul 12;44(13):5299-5309. doi: 10.1021/ma200563t.
6
Genetically engineered chimeric silk-silver binding proteins.
Adv Funct Mater. 2011 Aug 9;21(15):2889-2895. doi: 10.1002/adfm.201100249.
9
A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme.
Enzyme Microb Technol. 2011 Oct 10;49(5):441-5. doi: 10.1016/j.enzmictec.2011.07.005. Epub 2011 Jul 23.
10
Tunable self-assembly of genetically engineered silk--elastin-like protein polymers.
Biomacromolecules. 2011 Nov 14;12(11):3844-50. doi: 10.1021/bm201165h. Epub 2011 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验