Suppr超能文献

变形链球菌 CRISPR-Cas 系统在免疫和细胞生理学中的作用。

Role of the Streptococcus mutans CRISPR-Cas systems in immunity and cell physiology.

机构信息

Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.

Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.

出版信息

J Bacteriol. 2015 Feb 15;197(4):749-61. doi: 10.1128/JB.02333-14. Epub 2014 Dec 8.

Abstract

CRISPR-Cas systems provide adaptive microbial immunity against invading viruses and plasmids. The cariogenic bacterium Streptococcus mutans UA159 has two CRISPR-Cas systems: CRISPR1 (type II-A) and CRISPR2 (type I-C) with several spacers from both CRISPR cassettes matching sequences of phage M102 or genomic sequences of other S. mutans. The deletion of the cas genes of CRISPR1 (ΔC1S), CRISPR2 (ΔC2E), or both CRISPR1+2 (ΔC1SC2E) or the removal of spacers 2 and 3 (ΔCR1SP13E) in S. mutans UA159 did not affect phage sensitivity when challenged with virulent phage M102. Using plasmid transformation experiments, we demonstrated that the CRISPR1-Cas system inhibits transformation of S. mutans by the plasmids matching the spacers 2 and 3. Functional analysis of the cas deletion mutants revealed that in addition to a role in plasmid targeting, both CRISPR systems also contribute to the regulation of bacterial physiology in S. mutans. Compared to wild-type cells, the ΔC1S strain displayed diminished growth under cell membrane and oxidative stress, enhanced growth under low pH, and had reduced survival under heat shock and DNA-damaging conditions, whereas the ΔC2E strain exhibited increased sensitivity to heat shock. Transcriptional analysis revealed that the two-component signal transduction system VicR/K differentially modulates expression of cas genes within CRISPR-Cas systems, suggesting that VicR/K might coordinate the expression of two CRISPR-Cas systems. Collectively, we provide in vivo evidence that the type II-A CRISPR-Cas system of S. mutans may be targeted to manipulate its stress response and to influence the host to control the uptake and dissemination of antibiotic resistance genes.

摘要

CRISPR-Cas 系统为微生物提供了针对入侵病毒和质粒的适应性免疫。致龋菌变形链球菌 UA159 有两个 CRISPR-Cas 系统:CRISPR1(II-A 型)和 CRISPR2(I-C 型),两个 CRISPR 盒的几个间隔区与噬菌体 M102 的序列或其他变形链球菌的基因组序列匹配。CRISPR1(ΔC1S)、CRISPR2(ΔC2E)或 CRISPR1+2(ΔC1SC2E)的 cas 基因缺失或间隔区 2 和 3(ΔCR1SP13E)的去除并未影响噬菌体能感染的 S. mutans 的噬菌敏感性。通过质粒转化实验,我们证明 CRISPR1-Cas 系统抑制了与间隔区 2 和 3 匹配的质粒转化 S. mutans。cas 缺失突变体的功能分析表明,除了在质粒靶向中的作用外,两个 CRISPR 系统还参与了 S. mutans 细菌生理的调节。与野生型细胞相比,ΔC1S 菌株在细胞膜和氧化应激下的生长能力减弱,在低 pH 下的生长能力增强,在热休克和 DNA 损伤条件下的存活率降低,而ΔC2E 菌株对热休克的敏感性增加。转录分析显示,双组分信号转导系统 VicR/K 差异调节 CRISPR-Cas 系统内 cas 基因的表达,表明 VicR/K 可能协调两个 CRISPR-Cas 系统的表达。总之,我们提供了体内证据,表明 S. mutans 的 II-A 型 CRISPR-Cas 系统可能被靶向以操纵其应激反应,并影响宿主以控制抗生素耐药基因的摄取和传播。

相似文献

1
Role of the Streptococcus mutans CRISPR-Cas systems in immunity and cell physiology.
J Bacteriol. 2015 Feb 15;197(4):749-61. doi: 10.1128/JB.02333-14. Epub 2014 Dec 8.
2
Analysis of CRISPR in Streptococcus mutans suggests frequent occurrence of acquired immunity against infection by M102-like bacteriophages.
Microbiology (Reading). 2009 Jun;155(Pt 6):1966-1976. doi: 10.1099/mic.0.027508-0. Epub 2009 Apr 21.
3
CcpA and CodY Regulate CRISPR-Cas System of .
Microbiol Spectr. 2023 Aug 17;11(4):e0182623. doi: 10.1128/spectrum.01826-23. Epub 2023 Jun 27.
4
Characterization of a Type II-A CRISPR-Cas System in .
mSphere. 2020 Jun 24;5(3):e00235-20. doi: 10.1128/mSphere.00235-20.
5
Primed CRISPR-Cas Adaptation and Impaired Phage Adsorption in Streptococcus mutans.
mSphere. 2021 May 19;6(3):e00185-21. doi: 10.1128/mSphere.00185-21.
7
Deletion of cas3 gene in Streptococcus mutans affects biofilm formation and increases fluoride sensitivity.
Arch Oral Biol. 2019 Mar;99:190-197. doi: 10.1016/j.archoralbio.2019.01.016. Epub 2019 Jan 29.
8
Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response.
Mol Cell. 2017 Jan 5;65(1):168-175. doi: 10.1016/j.molcel.2016.11.031. Epub 2016 Dec 22.
9
CRISPR-Cas Systems Optimize Their Immune Response by Specifying the Site of Spacer Integration.
Mol Cell. 2016 Nov 3;64(3):616-623. doi: 10.1016/j.molcel.2016.08.038. Epub 2016 Sep 8.
10
Cooperation between Different CRISPR-Cas Types Enables Adaptation in an RNA-Targeting System.
mBio. 2021 Mar 30;12(2):e03338-20. doi: 10.1128/mBio.03338-20.

引用本文的文献

1
The stress of carrying CRISPR-Cas.
Virulence. 2025 Dec;16(1):2541701. doi: 10.1080/21505594.2025.2541701. Epub 2025 Aug 4.
2
Acquired CRISPR spacers and rhamnose-glucose polysaccharide defects confer resistance to phage ɸAPCM01.
bioRxiv. 2025 May 5:2025.05.05.652303. doi: 10.1101/2025.05.05.652303.
4
Fructose activates a stress response shared by methylglyoxal and hydrogen peroxide in .
mBio. 2025 May 14;16(5):e0048525. doi: 10.1128/mbio.00485-25. Epub 2025 Apr 17.
5
Role of CRISPR-Cas systems in periodontal disease pathogenesis and potential for periodontal therapy: A review.
Mol Oral Microbiol. 2025 Feb;40(1):1-16. doi: 10.1111/omi.12483. Epub 2024 Sep 3.
6
Function of the RNA-targeting class 2 type VI CRISPR Cas system of .
Front Microbiol. 2024 Apr 29;15:1384543. doi: 10.3389/fmicb.2024.1384543. eCollection 2024.
7
Human saliva modifies growth, biofilm architecture, and competitive behaviors of oral streptococci.
mSphere. 2024 Feb 28;9(2):e0077123. doi: 10.1128/msphere.00771-23. Epub 2024 Feb 6.
8
CcpA and CodY Regulate CRISPR-Cas System of .
Microbiol Spectr. 2023 Aug 17;11(4):e0182623. doi: 10.1128/spectrum.01826-23. Epub 2023 Jun 27.
9
Mechanisms regulating the CRISPR-Cas systems.
Front Microbiol. 2023 Feb 28;14:1060337. doi: 10.3389/fmicb.2023.1060337. eCollection 2023.
10
Prospective Advances in Genome Editing Investigation.
Adv Exp Med Biol. 2023;1396:301-313. doi: 10.1007/978-981-19-5642-3_19.

本文引用的文献

2
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems.
Nucleic Acids Res. 2014 Feb;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub 2013 Nov 22.
3
Crystal structure of Cas1 from Archaeoglobus fulgidus and characterization of its nucleolytic activity.
Biochem Biophys Res Commun. 2013 Nov 29;441(4):720-5. doi: 10.1016/j.bbrc.2013.10.122. Epub 2013 Nov 5.
4
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis.
Mol Cell. 2013 May 23;50(4):488-503. doi: 10.1016/j.molcel.2013.05.001.
5
High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates.
PLoS Genet. 2013 May;9(5):e1003495. doi: 10.1371/journal.pgen.1003495. Epub 2013 May 16.
6
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence.
Nature. 2013 May 9;497(7448):254-7. doi: 10.1038/nature12048. Epub 2013 Apr 14.
7
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems.
RNA Biol. 2013 May;10(5):726-37. doi: 10.4161/rna.24321. Epub 2013 Apr 5.
8
crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus.
RNA Biol. 2013 May;10(5):841-51. doi: 10.4161/rna.24203. Epub 2013 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验