Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
J Bacteriol. 2015 Feb 15;197(4):749-61. doi: 10.1128/JB.02333-14. Epub 2014 Dec 8.
CRISPR-Cas systems provide adaptive microbial immunity against invading viruses and plasmids. The cariogenic bacterium Streptococcus mutans UA159 has two CRISPR-Cas systems: CRISPR1 (type II-A) and CRISPR2 (type I-C) with several spacers from both CRISPR cassettes matching sequences of phage M102 or genomic sequences of other S. mutans. The deletion of the cas genes of CRISPR1 (ΔC1S), CRISPR2 (ΔC2E), or both CRISPR1+2 (ΔC1SC2E) or the removal of spacers 2 and 3 (ΔCR1SP13E) in S. mutans UA159 did not affect phage sensitivity when challenged with virulent phage M102. Using plasmid transformation experiments, we demonstrated that the CRISPR1-Cas system inhibits transformation of S. mutans by the plasmids matching the spacers 2 and 3. Functional analysis of the cas deletion mutants revealed that in addition to a role in plasmid targeting, both CRISPR systems also contribute to the regulation of bacterial physiology in S. mutans. Compared to wild-type cells, the ΔC1S strain displayed diminished growth under cell membrane and oxidative stress, enhanced growth under low pH, and had reduced survival under heat shock and DNA-damaging conditions, whereas the ΔC2E strain exhibited increased sensitivity to heat shock. Transcriptional analysis revealed that the two-component signal transduction system VicR/K differentially modulates expression of cas genes within CRISPR-Cas systems, suggesting that VicR/K might coordinate the expression of two CRISPR-Cas systems. Collectively, we provide in vivo evidence that the type II-A CRISPR-Cas system of S. mutans may be targeted to manipulate its stress response and to influence the host to control the uptake and dissemination of antibiotic resistance genes.
CRISPR-Cas 系统为微生物提供了针对入侵病毒和质粒的适应性免疫。致龋菌变形链球菌 UA159 有两个 CRISPR-Cas 系统:CRISPR1(II-A 型)和 CRISPR2(I-C 型),两个 CRISPR 盒的几个间隔区与噬菌体 M102 的序列或其他变形链球菌的基因组序列匹配。CRISPR1(ΔC1S)、CRISPR2(ΔC2E)或 CRISPR1+2(ΔC1SC2E)的 cas 基因缺失或间隔区 2 和 3(ΔCR1SP13E)的去除并未影响噬菌体能感染的 S. mutans 的噬菌敏感性。通过质粒转化实验,我们证明 CRISPR1-Cas 系统抑制了与间隔区 2 和 3 匹配的质粒转化 S. mutans。cas 缺失突变体的功能分析表明,除了在质粒靶向中的作用外,两个 CRISPR 系统还参与了 S. mutans 细菌生理的调节。与野生型细胞相比,ΔC1S 菌株在细胞膜和氧化应激下的生长能力减弱,在低 pH 下的生长能力增强,在热休克和 DNA 损伤条件下的存活率降低,而ΔC2E 菌株对热休克的敏感性增加。转录分析显示,双组分信号转导系统 VicR/K 差异调节 CRISPR-Cas 系统内 cas 基因的表达,表明 VicR/K 可能协调两个 CRISPR-Cas 系统的表达。总之,我们提供了体内证据,表明 S. mutans 的 II-A 型 CRISPR-Cas 系统可能被靶向以操纵其应激反应,并影响宿主以控制抗生素耐药基因的摄取和传播。