Warren Nicholas J, Mykhaylyk Oleksandr O, Ryan Anthony J, Williams Mark, Doussineau Tristan, Dugourd Philippe, Antoine Rodolphe, Portale Giuseppe, Armes Steven P
Department of Chemistry, University of Sheffield , Brook Hill, Sheffield, S3 7HF, United Kingdom.
J Am Chem Soc. 2015 Feb 11;137(5):1929-37. doi: 10.1021/ja511423m. Epub 2015 Jan 27.
Small angle X-ray scattering (SAXS), electrospray ionization charge detection mass spectrometry (CD-MS), dynamic light scattering (DLS), and transmission electron microscopy (TEM) are used to characterize poly(glycerol monomethacrylate)55-poly(2-hydroxypropyl methacrylate)x (G55-Hx) vesicles prepared by polymerization-induced self-assembly (PISA) using a reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization formulation. A G55 chain transfer agent is utilized to prepare a series of G55-Hx diblock copolymers, where the mean degree of polymerization (DP) of the membrane-forming block (x) is varied from 200 to 2000. TEM confirms that vesicles with progressively thicker membranes are produced for x = 200-1000, while SAXS indicates a gradual reduction in mean aggregation number for higher x values, which is consistent with CD-MS studies. Both DLS and SAXS studies indicate minimal change in the overall vesicle diameter between x = 400 and 800. Fitting SAXS patterns to a vesicle model enables calculation of the membrane thickness, degree of hydration of the membrane, and the mean vesicle aggregation number. The membrane thickness increases at higher x values, hence the vesicle lumen must become smaller if the external vesicle dimensions remain constant. Geometric considerations indicate that this growth mechanism lowers the total vesicle interfacial area and hence reduces the free energy of the system. However, it also inevitably leads to gradual ingress of the encapsulated water molecules into the vesicle membrane, as confirmed by SAXS analysis. Ultimately, the highly plasticized membranes become insufficiently hydrophobic to stabilize the vesicle morphology when x exceeds 1000, thus this PISA growth mechanism ultimately leads to vesicle "death".
小角X射线散射(SAXS)、电喷雾电离电荷检测质谱(CD-MS)、动态光散射(DLS)和透射电子显微镜(TEM)被用于表征通过使用可逆加成-断裂链转移(RAFT)水分散聚合配方的聚合诱导自组装(PISA)制备的聚(甘油单甲基丙烯酸酯)55-聚(甲基丙烯酸2-羟丙酯)x(G55-Hx)囊泡。使用G55链转移剂制备一系列G55-Hx二嵌段共聚物,其中成膜嵌段的平均聚合度(DP)(x)在200至2000之间变化。TEM证实,对于x = 200 - 1000,产生了膜逐渐变厚的囊泡,而SAXS表明对于较高的x值,平均聚集数逐渐减少,这与CD-MS研究一致。DLS和SAXS研究均表明,在x = 400至800之间,囊泡的总体直径变化极小。将SAXS图案拟合到囊泡模型能够计算膜厚度、膜的水合程度以及平均囊泡聚集数。在较高的x值下膜厚度增加,因此如果囊泡外部尺寸保持恒定,则囊泡内腔必定变小。几何考虑表明,这种生长机制降低了囊泡的总界面面积,从而降低了系统的自由能。然而,正如SAXS分析所证实的,这也不可避免地导致被包裹的水分子逐渐进入囊泡膜。最终,当x超过1000时,高度增塑的膜变得疏水性不足,无法稳定囊泡形态,因此这种PISA生长机制最终导致囊泡“死亡”。