Moore Richard, Spinhirne Alec, Lai Michael J, Preisser Samantha, Li Yi, Kang Taek, Bleris Leonidas
Bioengineering Department, University of Texas at Dallas, Richardson, TX 75080, USA Electrical Engineering Department, University of Texas at Dallas, Richardson, TX 75080, USA.
Bioengineering Department, University of Texas at Dallas, Richardson, TX 75080, USA.
Nucleic Acids Res. 2015 Jan;43(2):1297-303. doi: 10.1093/nar/gku1326. Epub 2014 Dec 18.
Controllable gene delivery via vector-based systems remains a formidable challenge in mammalian synthetic biology and a desirable asset in gene therapy applications. Here, we introduce a methodology to control the copies and residence time of a gene product delivered in host human cells but also selectively disrupt fragments of the delivery vehicle. A crucial element of the proposed system is the CRISPR protein Cas9. Upon delivery, Cas9 guided by a custom RNA sequence cleaves the delivery vector at strategically placed targets thereby inactivating a co-expressed gene of interest. Importantly, using experiments in human embryonic kidney cells, we show that specific parameters of the system can be adjusted to fine-tune the delivery properties. We envision future applications in complex synthetic biology architectures, gene therapy and trace-free delivery.
通过基于载体的系统实现可控的基因递送在哺乳动物合成生物学中仍然是一项艰巨的挑战,但在基因治疗应用中却是一项理想的资产。在此,我们介绍一种方法,该方法不仅可以控制在宿主人类细胞中递送的基因产物的拷贝数和停留时间,还能选择性地破坏递送载体的片段。所提出系统的一个关键要素是CRISPR蛋白Cas9。递送后,由定制RNA序列引导的Cas9会在策略性放置的靶点处切割递送载体,从而使共表达的目标基因失活。重要的是,通过在人胚胎肾细胞中的实验,我们表明可以调整系统的特定参数以微调递送特性。我们设想该方法在复杂的合成生物学架构、基因治疗和无痕递送中的未来应用。