Harrison David A, Lone Nazir I, Haddow Catriona, MacGillivray Moranne, Khan Angela, Cook Brian, Rowan Kathryn M
Intensive Care National Audit & Research Centre (ICNARC), Napier House, 24 High Holborn, London, WC1V 6AZ UK.
Scottish Intensive Care Society Audit Group, Information Services Division, NHS National Services Scotland, 1 South Gyle Crescent, Edinburgh, EH12 9EB UK ; Directorate of Critical Care, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh, EH16 5SA UK ; Centre for Population Health Sciences, University of Edinburgh, Medical School, Teviot Place, Edinburgh, EH8 9AG UK.
BMC Anesthesiol. 2014 Dec 15;14:116. doi: 10.1186/1471-2253-14-116. eCollection 2014.
Risk prediction models are used in critical care for risk stratification, summarising and communicating risk, supporting clinical decision-making and benchmarking performance. However, they require validation before they can be used with confidence, ideally using independently collected data from a different source to that used to develop the model. The aim of this study was to validate the Intensive Care National Audit & Research Centre (ICNARC) model using independently collected data from critical care units in Scotland.
Data were extracted from the Scottish Intensive Care Society Audit Group (SICSAG) database for the years 2007 to 2009. Recoding and mapping of variables was performed, as required, to apply the ICNARC model (2009 recalibration) to the SICSAG data using standard computer algorithms. The performance of the ICNARC model was assessed for discrimination, calibration and overall fit and compared with that of the Acute Physiology And Chronic Health Evaluation (APACHE) II model.
There were 29,626 admissions to 24 adult, general critical care units in Scotland between 1 January 2007 and 31 December 2009. After exclusions, 23,269 admissions were included in the analysis. The ICNARC model outperformed APACHE II on measures of discrimination (c index 0.848 versus 0.806), calibration (Hosmer-Lemeshow chi-squared statistic 18.8 versus 214) and overall fit (Brier's score 0.140 versus 0.157; Shapiro's R 0.652 versus 0.621). Model performance was consistent across the three years studied.
The ICNARC model performed well when validated in an external population to that in which it was developed, using independently collected data.
风险预测模型用于重症监护中的风险分层、风险总结与沟通、支持临床决策以及绩效评估。然而,在能够放心使用之前,它们需要进行验证,理想情况下是使用与开发模型所使用的数据来源不同的独立收集的数据。本研究的目的是使用从苏格兰重症监护病房独立收集的数据来验证重症监护国家审计与研究中心(ICNARC)模型。
从苏格兰重症监护学会审计组(SICSAG)数据库中提取2007年至2009年的数据。根据需要对变量进行重新编码和映射,以便使用标准计算机算法将ICNARC模型(2009年重新校准)应用于SICSAG数据。评估ICNARC模型在区分度、校准度和整体拟合度方面的表现,并与急性生理与慢性健康评估(APACHE)II模型进行比较。
2007年1月1日至2009年12月31日期间,苏格兰24个成人综合重症监护病房共收治29626例患者。排除后,23269例纳入分析。在区分度(c指数0.848对0.806)、校准度(Hosmer-Lemeshow卡方统计量18.8对214)和整体拟合度(Brier评分0.140对0.157;Shapiro's R 0.652对0.621)方面,ICNARC模型优于APACHE II。在所研究的三年中,模型表现一致。
当使用独立收集的数据在外部人群中进行验证时,ICNARC模型表现良好。