文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

表面功能化对人血清白蛋白在纳米颗粒上吸附的影响-荧光相关光谱研究。

Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles - a fluorescence correlation spectroscopy study.

机构信息

Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.

Department of Physics, Philipps University Marburg, Renthof 7, 35037 Marburg, Germany.

出版信息

Beilstein J Nanotechnol. 2014 Nov 7;5:2036-47. doi: 10.3762/bjnano.5.212. eCollection 2014.


DOI:10.3762/bjnano.5.212
PMID:25551031
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4273259/
Abstract

By using fluorescence correlation spectroscopy (FCS), we have studied the adsorption of human serum albumin (HSA) onto Fe-Pt nanoparticles (NPs, 6 nm radius), CdSe/ZnS quantum dots (QDs, 5 nm radius) and Au and Ag nanoclusters (1-4 nm radius), which are enshrouded by various water-solubilizing surface layers exposing different chemical functional groups (carboxyl, amino and both), thereby endowing the NPs with different surface charges. We have also measured the effects of modified surface functionalizations on the protein via succinylation and amination. A step-wise increase in hydrodynamic radius with protein concentration was always observed, revealing formation of protein monolayers coating the NPs, independent of their surface charge. The differences in the thickness of the protein corona were rationalized in terms of the different orientations in which HSA adsorbs onto the NPs. The midpoints of the binding transition, which quantifies the affinity of HSA toward the NP, were observed to differ by almost four orders of magnitude. These variations can be understood in terms of specific Coulombic interactions between the proteins and the NP surfaces.

摘要

利用荧光相关光谱(FCS),我们研究了人血清白蛋白(HSA)在 Fe-Pt 纳米颗粒(NPs,半径 6nm)、CdSe/ZnS 量子点(QDs,半径 5nm)和 Au 及 Ag 纳米团簇(半径 1-4nm)上的吸附,这些纳米颗粒被各种水溶性表面层包裹,暴露了不同的化学官能团(羧基、氨基和两者兼有),从而赋予 NPs 不同的表面电荷。我们还测量了通过琥珀酰化和氨化修饰表面官能团对蛋白质的影响。随着蛋白质浓度的增加,水动力半径呈阶梯式增加,这表明形成了覆盖 NPs 的蛋白质单层,而与 NPs 的表面电荷无关。根据 HSA 在 NPs 上的不同吸附取向,可以合理地解释蛋白质冠层的厚度差异。结合转变的中点,定量了 HSA 与 NP 的亲和力,观察到其差异几乎达到四个数量级。这些变化可以用蛋白质与 NP 表面之间的特定库仑相互作用来理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/d7e8a9b2b33d/Beilstein_J_Nanotechnol-05-2036-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/5783bd471106/Beilstein_J_Nanotechnol-05-2036-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/93c4b9a54cd3/Beilstein_J_Nanotechnol-05-2036-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/f10c773f6bec/Beilstein_J_Nanotechnol-05-2036-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/736de229bdc9/Beilstein_J_Nanotechnol-05-2036-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/9470980a5944/Beilstein_J_Nanotechnol-05-2036-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/d7e8a9b2b33d/Beilstein_J_Nanotechnol-05-2036-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/5783bd471106/Beilstein_J_Nanotechnol-05-2036-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/93c4b9a54cd3/Beilstein_J_Nanotechnol-05-2036-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/f10c773f6bec/Beilstein_J_Nanotechnol-05-2036-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/736de229bdc9/Beilstein_J_Nanotechnol-05-2036-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/9470980a5944/Beilstein_J_Nanotechnol-05-2036-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b173/4273259/d7e8a9b2b33d/Beilstein_J_Nanotechnol-05-2036-g007.jpg

相似文献

[1]
Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles - a fluorescence correlation spectroscopy study.

Beilstein J Nanotechnol. 2014-11-7

[2]
In Situ Characterization of Protein Adsorption onto Nanoparticles by Fluorescence Correlation Spectroscopy.

Acc Chem Res. 2017-2-1

[3]
Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy.

Beilstein J Nanotechnol. 2011-7-12

[4]
Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.

ACS Nano. 2014-1-3

[5]
Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake.

ACS Nano. 2015-6-25

[6]
Studying the protein corona on nanoparticles by FCS.

Methods Enzymol. 2013

[7]
Protein Labeling Facilitates the Understanding of Protein Corona Formation via Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy.

Langmuir. 2023-10-31

[8]
The Nature of a Hard Protein Corona Forming on Quantum Dots Exposed to Human Blood Serum.

Small. 2016-11

[9]
Mitigating the toxic effects of CdSe quantum dots towards freshwater alga Scenedesmus obliquus: Role of eco-corona.

Environ Pollut. 2021-2-1

[10]
In Situ Investigation on the Protein Corona Formation of Quantum Dots by Using Fluorescence Resonance Energy Transfer.

Small. 2020-5

引用本文的文献

[1]
Protein corona formation on different-shaped CdSe/CdS semiconductor nanocrystals.

Nanoscale Adv. 2024-11-25

[2]
Encapsulation of Nanoparticles with Statistical Copolymers with Different Surface Charges and Analysis of Their Interactions with Proteins and Cells.

Int J Mol Sci. 2024-5-19

[3]
Performance of nanoparticles for biomedical applications: The / discrepancy.

Biophys Rev (Melville). 2022-2-1

[4]
Impact of soft protein interactions on the excretion, extent of receptor occupancy and tumor accumulation of ultrasmall metal nanoparticles: a compartmental model simulation.

RSC Adv. 2019-8-28

[5]
Utilizing polymer-conjugate albumin-based ultrafine gas bubbles in combination with ultra-high frequency radiations in drug transportation and delivery.

RSC Adv. 2021-10-25

[6]
Influence of the chirality of carbon nanodots on their interaction with proteins and cells.

Nat Commun. 2021-12-10

[7]
A hard-sphere model of protein corona formation on spherical and cylindrical nanoparticles.

Biophys J. 2021-10-19

[8]
Do Iron Oxide Nanoparticles Have Significant Antibacterial Properties?

Antibiotics (Basel). 2021-7-20

[9]
Label-Free Study of Protein Adsorption on Nanoparticles.

J Phys Chem B. 2021-8-12

[10]
Biomolecular interactions of ultrasmall metallic nanoparticles and nanoclusters.

Nanoscale Adv. 2021-4-28

本文引用的文献

[1]
Toward a molecular understanding of nanoparticle-protein interactions.

Biophys Rev. 2012-6

[2]
Penetration of normal, damaged and diseased skin--an in vitro study on dendritic core-multishell nanotransporters.

J Control Release. 2014-4-13

[3]
Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions.

ACS Nano. 2014-1-3

[4]
Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology.

Nat Nanotechnol. 2013-9-22

[5]
Intracellular thermometry by using fluorescent gold nanoclusters.

Angew Chem Int Ed Engl. 2013-9-13

[6]
Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle.

J Nanobiotechnology. 2013-7-19

[7]
Temperature: the "ignored" factor at the NanoBio interface.

ACS Nano. 2013-7-10

[8]
Polymer-coated nanoparticles interacting with proteins and cells: focusing on the sign of the net charge.

ACS Nano. 2013-4-8

[9]
New views on cellular uptake and trafficking of manufactured nanoparticles.

J R Soc Interface. 2013-2-20

[10]
Charge tunable zwitterionic polyampholyte layers formed in cyclic olefin copolymer microchannels through photochemical graft polymerization.

ACS Appl Mater Interfaces. 2013-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索