Suppr超能文献

酿酒酵母在生物抗菌纳米结构表面的粘附依赖性破裂

Adhesion-dependent rupturing of Saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces.

作者信息

Nowlin Kyle, Boseman Adam, Covell Alan, LaJeunesse Dennis

出版信息

J R Soc Interface. 2015 Jan 6;12(102):20140999. doi: 10.1098/rsif.2014.0999.

Abstract

Recent studies have shown that some nanostructured surfaces (NSS), many of which are derived from surfaces found on insect cuticles, rupture and kill adhered prokaryotic microbes. Most important, the nanoscale topography is directly responsible for this effect. Although parameters such as cell adhesion and cell wall rigidity have been suggested to play significant roles in this process, there is little experimental evidence regarding the underlying mechanisms involving NSS-induced microbial rupture. In this work, we report the NSS-induced rupturing of a eukaryotic microorganism, Saccharomyces cerevisiae. We show that the amount of NSS-induced rupture of S. cerevisiae is dependent on both the adhesive qualities of the yeast cell and the nanostructure geometry of the NSS. Thus, we are providing the first empirical evidence that these parameters play a direct role in the rupturing of microbes on NSS. Our observations of this phenomenon with S. cerevisiae, particularly the morphological changes, are strikingly similar to that reported for bacteria despite the differences in the yeast cell wall structure. Consequently, NSS provide a novel approach for the control of microbial growth and development of broad-spectrum microbicidal surfaces.

摘要

最近的研究表明,一些纳米结构表面(NSS),其中许多源自昆虫角质层表面,能够使附着的原核微生物破裂并杀死它们。最重要的是,纳米级形貌直接导致了这种效应。尽管有人提出细胞黏附及细胞壁刚性等参数在此过程中发挥重要作用,但关于纳米结构表面诱导微生物破裂的潜在机制,几乎没有实验证据。在这项研究中,我们报告了纳米结构表面诱导真核微生物酿酒酵母破裂的情况。我们发现,纳米结构表面诱导酿酒酵母破裂的程度既取决于酵母细胞的黏附特性,也取决于纳米结构表面的纳米结构几何形状。因此,我们首次提供了实证证据,证明这些参数在纳米结构表面上微生物的破裂过程中发挥着直接作用。我们对酿酒酵母这一现象的观察,尤其是形态变化,尽管酵母细胞壁结构存在差异,但与细菌的相关报道惊人地相似。因此,纳米结构表面为控制微生物生长及开发广谱杀菌表面提供了一种新方法。

相似文献

1
Adhesion-dependent rupturing of Saccharomyces cerevisiae on biological antimicrobial nanostructured surfaces.
J R Soc Interface. 2015 Jan 6;12(102):20140999. doi: 10.1098/rsif.2014.0999.
2
Cell Adhesion, Elasticity, and Rupture Forces Guide Microbial Cell Death on Nanostructured Antimicrobial Titanium Surfaces.
ACS Appl Bio Mater. 2024 Jan 15;7(1):344-361. doi: 10.1021/acsabm.3c00943. Epub 2023 Dec 15.
4
Cell Rupture and Morphogenesis Control of the Dimorphic Yeast by Nanostructured Surfaces.
ACS Omega. 2021 Jan 4;6(2):1361-1369. doi: 10.1021/acsomega.0c04980. eCollection 2021 Jan 19.
5
Nano-structured antimicrobial surfaces: From nature to synthetic analogues.
J Colloid Interface Sci. 2017 Dec 15;508:603-616. doi: 10.1016/j.jcis.2017.07.021. Epub 2017 Jul 8.
6
Nanostructured Surfaces with Multimodal Antimicrobial Action.
Acc Chem Res. 2021 Dec 21;54(24):4508-4517. doi: 10.1021/acs.accounts.1c00542. Epub 2021 Dec 7.
7
Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features.
ACS Appl Mater Interfaces. 2016 Jun 22;8(24):14966-74. doi: 10.1021/acsami.5b08309. Epub 2015 Nov 9.
8
Interaction of Giant Unilamellar Vesicles with the Surface Nanostructures on Dragonfly Wings.
Langmuir. 2019 Feb 12;35(6):2422-2430. doi: 10.1021/acs.langmuir.8b03470. Epub 2019 Jan 25.
9
Bacterial-nanostructure interactions: The role of cell elasticity and adhesion forces.
J Colloid Interface Sci. 2019 Jun 15;546:192-210. doi: 10.1016/j.jcis.2019.03.050. Epub 2019 Mar 15.
10
Trends in Bactericidal Nanostructured Surfaces: An Analytical Perspective.
ACS Appl Bio Mater. 2021 Oct 18;4(10):7626-7642. doi: 10.1021/acsabm.1c00839. Epub 2021 Oct 4.

引用本文的文献

1
Comprehensive review of bacterial death mechanism on nanopillared nanostructured surfaces.
Biophys Rev. 2025 May 20;17(3):893-908. doi: 10.1007/s12551-025-01319-5. eCollection 2025 Jun.
3
Polyacrylonitrile nanofibrous mat from electrospinning: Born with potential anti-fungal functionality.
Eur Polym J. 2019 Oct;119:176-180. doi: 10.1016/j.eurpolymj.2019.07.035. Epub 2019 Jul 27.
4
Research progress of biomimetic materials in oral medicine.
J Biol Eng. 2023 Nov 23;17(1):72. doi: 10.1186/s13036-023-00382-4.
5
Transcriptional Response of to Nanostructured Surfaces Provides Insight into Cellular Rupture and Antifungal Drug Sensitization.
ACS Biomater Sci Eng. 2023 Dec 11;9(12):6724-6733. doi: 10.1021/acsbiomaterials.3c00938. Epub 2023 Nov 17.
6
Progress in Nanostructured Mechano-Bactericidal Polymeric Surfaces for Biomedical Applications.
Nanomaterials (Basel). 2023 Oct 20;13(20):2799. doi: 10.3390/nano13202799.
7
Multi-functional approach in the design of smart surfaces to mitigate bacterial infections: a review.
Front Cell Infect Microbiol. 2023 May 23;13:1139026. doi: 10.3389/fcimb.2023.1139026. eCollection 2023.
8
Designing Effective Antimicrobial Nanostructured Surfaces: Highlighting the Lack of Consensus in the Literature.
ACS Omega. 2023 Apr 20;8(17):14873-14883. doi: 10.1021/acsomega.2c08068. eCollection 2023 May 2.
9
Honeybee wings hold antibiofouling and antimicrobial clues for improved applications in health care and industries.
AIMS Microbiol. 2023 Apr 3;9(2):332-345. doi: 10.3934/microbiol.2023018. eCollection 2023.

本文引用的文献

1
Bactericidal activity of black silicon.
Nat Commun. 2013;4:2838. doi: 10.1038/ncomms3838.
2
Ultrastructural analysis of wild type and mutant Drosophila melanogaster using helium ion microscopy.
Micron. 2013 Aug;51:26-35. doi: 10.1016/j.micron.2013.06.005. Epub 2013 Jun 24.
3
Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces.
Biophys J. 2013 Feb 19;104(4):835-40. doi: 10.1016/j.bpj.2012.12.046.
4
Hospital faces uncertainty as it copes with surge of patients with fungal meningitis.
JAMA. 2013 Jan 16;309(3):219-21. doi: 10.1001/jama.2012.187705.
5
Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces.
Appl Microbiol Biotechnol. 2013 Oct;97(20):9257-62. doi: 10.1007/s00253-012-4628-5. Epub 2012 Dec 19.
6
Aneuploidy and drug resistance in pathogenic fungi.
PLoS Pathog. 2012;8(11):e1003022. doi: 10.1371/journal.ppat.1003022. Epub 2012 Nov 15.
7
Fungal infections associated with contaminated methylprednisolone in Tennessee.
N Engl J Med. 2012 Dec 6;367(23):2194-203. doi: 10.1056/NEJMoa1212972. Epub 2012 Nov 6.
8
Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings.
Small. 2012 Aug 20;8(16):2489-94. doi: 10.1002/smll.201200528. Epub 2012 Jun 4.
9
Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2012 Jun;113(6):755-61. doi: 10.1016/j.oooo.2011.11.004. Epub 2012 Mar 3.
10
Systems biology of fungal infection.
Front Microbiol. 2012 Apr 2;3:108. doi: 10.3389/fmicb.2012.00108. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验