Suppr超能文献

基于单一群组样本分子亲缘关系估计有效繁殖个体数量

Estimation of effective number of breeders from molecular coancestry of single cohort sample.

作者信息

Nomura Tetsuro

机构信息

Department of Biotechnology, Faculty of Engineering, Kyoto Sangyo University Kyoto, Japan.

出版信息

Evol Appl. 2008 Aug;1(3):462-74. doi: 10.1111/j.1752-4571.2008.00015.x. Epub 2008 Mar 18.

Abstract

The effective population size, N e, is an important parameter in population genetics and conservation biology. It is, however, difficult to directly estimate N e from demographic data in many wild species. Alternatively, the use of genetic data has received much attention in recent years. In the present study, I propose a new method for estimating the effective number of breeders N eb from a parameter of allele sharing (molecular coancestry) among sampled progeny. The bias and confidence interval of the new estimator are compared with those from a published method, i.e. the heterozygote-excess method, using computer simulation. Two population models are simulated; the noninbred population that consists of noninbred and nonrelated parents and the inbred population that is composed of inbred and related parents. Both methods give essentially unbiased estimates of N eb when applied to the noninbred population. In the inbred population, the proposed method gives a downward biased estimate, but the confidence interval is remarkably narrowed compared with that in the noninbred population. Estimate from the heterozygote-excess method is nearly unbiased in the inbred population, but suffers from a larger confidence interval. By combining the estimates from the two methods as a harmonic mean, the reliability is remarkably improved.

摘要

有效种群大小Ne是种群遗传学和保护生物学中的一个重要参数。然而,在许多野生物种中,很难直接从种群统计学数据中估计Ne。近年来,利用遗传数据的方法受到了广泛关注。在本研究中,我提出了一种新方法,可根据样本后代中等位基因共享(分子共祖系数)的一个参数来估计有效繁殖个体数Neb。通过计算机模拟,将新估计器的偏差和置信区间与已发表方法(即杂合子过剩法)的偏差和置信区间进行了比较。模拟了两种种群模型:由非近亲且无亲缘关系的亲本组成的非近交种群,以及由近亲且有亲缘关系的亲本组成的近交种群。当应用于非近交种群时,两种方法对Neb的估计基本无偏差。在近交种群中,所提出的方法给出的估计值存在向下偏差,但与非近交种群相比,置信区间显著变窄。杂合子过剩法在近交种群中的估计几乎无偏差,但置信区间较大。将两种方法的估计值作为调和平均数相结合,可靠性得到显著提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e1a/3352377/4a3b3b0481bf/eva0001-0462-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验