Suppr超能文献

对近期使用计算流体动力学模拟对终末期心力衰竭患者进行机械辅助装置治疗结果的综述。

Review of recent results using computational fluid dynamics simulations in patients receiving mechanical assist devices for end-stage heart failure.

作者信息

Farag Mina Berty, Karmonik Christof, Rengier Fabian, Loebe Matthias, Karck Matthias, von Tengg-Kobligk Hendrik, Ruhparwar Arjang, Partovi Sasan

机构信息

University Hospital of Heidelberg, Heidelberg, Germany.

Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas.

出版信息

Methodist Debakey Cardiovasc J. 2014 Jul-Sep;10(3):185-9. doi: 10.14797/mdcj-10-3-185.

Abstract

Many end-stage heart failure patients are not eligible to undergo heart transplantation due to organ shortage, and even those under consideration for transplantation might suffer long waiting periods. A better understanding of the hemodynamic impact of left ventricular assist devices (LVAD) on the cardiovascular system is therefore of great interest. Computational fluid dynamics (CFD) simulations give the opportunity to study the hemodynamics in this patient population using clinical imaging data such as computed tomographic angiography. This article reviews a recent study series involving patients with pulsatile and constant-flow LVAD devices in which CFD simulations were used to qualitatively and quantitatively assess blood flow dynamics in the thoracic aorta, demonstrating its potential to enhance the information available from medical imaging.

摘要

由于器官短缺,许多终末期心力衰竭患者没有资格接受心脏移植,甚至那些正在考虑移植的患者也可能要等待很长时间。因此,深入了解左心室辅助装置(LVAD)对心血管系统的血流动力学影响具有重要意义。计算流体动力学(CFD)模拟为利用计算机断层血管造影等临床影像数据研究这类患者群体的血流动力学提供了机会。本文综述了最近一项涉及使用搏动式和恒流式LVAD装置患者的研究系列,其中CFD模拟用于定性和定量评估胸主动脉中的血流动力学,证明了其增强医学影像可用信息的潜力。

相似文献

4
Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta.
J Thorac Cardiovasc Surg. 2014 Apr;147(4):1326-1333.e1. doi: 10.1016/j.jtcvs.2013.09.069. Epub 2013 Dec 15.
6
Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study.
J Thorac Cardiovasc Surg. 2013 May;145(5):1352-8. doi: 10.1016/j.jtcvs.2012.06.057. Epub 2012 Jul 25.
7
Durability of left ventricular assist devices: Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) 2006 to 2011.
J Thorac Cardiovasc Surg. 2013 Aug;146(2):437-41.e1. doi: 10.1016/j.jtcvs.2013.02.018. Epub 2013 Mar 13.
8
Use of patient-specific computational models for optimization of aortic insufficiency after implantation of left ventricular assist device.
J Thorac Cardiovasc Surg. 2021 Nov;162(5):1556-1563. doi: 10.1016/j.jtcvs.2020.04.164. Epub 2020 May 15.
9
Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
Cardiovasc Eng Technol. 2018 Dec;9(4):623-640. doi: 10.1007/s13239-018-00378-y. Epub 2018 Oct 5.
10
Sympathetic neural and hemodynamic responses to upright tilt in patients with pulsatile and nonpulsatile left ventricular assist devices.
Circ Heart Fail. 2013 Mar;6(2):293-9. doi: 10.1161/CIRCHEARTFAILURE.112.969873. Epub 2012 Dec 18.

引用本文的文献

1
Sensitivity of Left Atrial Flow Dynamics to Echocardiographic and Computed Tomography Data.
J Cardiovasc Transl Res. 2025 Feb 19. doi: 10.1007/s12265-025-10598-y.
2
Rapid Manufacturing Method of Cardiovascular Models for Experimental Flow Analysis.
MethodsX. 2024 Dec 21;14:103124. doi: 10.1016/j.mex.2024.103124. eCollection 2025 Jun.
3
Application of physics-based flow models in cardiovascular medicine: Current practices and challenges.
Biophys Rev (Melville). 2021 Mar 22;2(1):011302. doi: 10.1063/5.0040315. eCollection 2021 Mar.
5
Intermittent Aortic Valve Opening and Risk of Thrombosis in Ventricular Assist Device Patients.
ASAIO J. 2017 Jul/Aug;63(4):425-432. doi: 10.1097/MAT.0000000000000512.
6
LVAD Outflow Graft Angle and Thrombosis Risk.
ASAIO J. 2017 Jan/Feb;63(1):14-23. doi: 10.1097/MAT.0000000000000443.
7
Computational fluid dynamics modelling in cardiovascular medicine.
Heart. 2016 Jan;102(1):18-28. doi: 10.1136/heartjnl-2015-308044. Epub 2015 Oct 28.

本文引用的文献

1
Computational fluid dynamics in patients with continuous-flow left ventricular assist device support show hemodynamic alterations in the ascending aorta.
J Thorac Cardiovasc Surg. 2014 Apr;147(4):1326-1333.e1. doi: 10.1016/j.jtcvs.2013.09.069. Epub 2013 Dec 15.
5
Integration of the computational fluid dynamics technique with MRI in aortic dissections.
Magn Reson Med. 2013 May;69(5):1438-42. doi: 10.1002/mrm.24376. Epub 2012 Jun 14.
6
Longitudinal computational fluid dynamics study of aneurysmal dilatation in a chronic DeBakey type III aortic dissection.
J Vasc Surg. 2012 Jul;56(1):260-3.e1. doi: 10.1016/j.jvs.2012.02.064. Epub 2012 May 10.
7
Computational fluid dynamics analysis of surgical adjustment of left ventricular assist device implantation to minimise stroke risk.
Comput Methods Biomech Biomed Engin. 2013;16(6):622-38. doi: 10.1080/10255842.2011.629616. Epub 2011 Dec 21.
8
Computational study of haemodynamic effects of entry- and exit-tear coverage in a DeBakey type III aortic dissection: technical report.
Eur J Vasc Endovasc Surg. 2011 Aug;42(2):172-7. doi: 10.1016/j.ejvs.2011.04.008. Epub 2011 May 6.
9
Is bridge to recovery more likely with pulsatile left ventricular assist devices than with nonpulsatile-flow systems?
Ann Thorac Surg. 2011 May;91(5):1335-40. doi: 10.1016/j.athoracsur.2011.01.027. Epub 2011 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验