National Engineering Research Center for Nanotechnology, Shanghai 200241 (China); Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China).
Angew Chem Int Ed Engl. 2015 Feb 16;54(8):2431-5. doi: 10.1002/anie.201408247. Epub 2015 Jan 19.
A novel three-dimensional (3D) superstructure based on the growth and origami folding of DNA on gold nanoparticles (AuNPs) was developed. The 3D superstructure contains a nanoparticle core and dozens of two-dimensional DNA belts folded from long single-stranded DNAs grown in situ on the nanoparticle by rolling circle amplification (RCA). We designed two mechanisms to achieve the loading of molecules onto the 3D superstructures. In one mechanism, ligands bound to target molecules are merged into the growing DNA during the RCA process (merging mechanism). In the other mechanism, target molecules are intercalated into the double-stranded DNAs produced by origami folding (intercalating mechanism). We demonstrated that the as-fabricated 3D superstructures have a high molecule-loading capacity and that they enable the high-efficiency transport of signal reporters and drugs for cellular imaging and drug delivery, respectively.
一种基于金纳米粒子(AuNPs)上 DNA 的生长和折纸折叠的新型三维(3D)超结构被开发出来。该 3D 超结构包含一个纳米粒子核心和数十个二维 DNA 带,这些 DNA 带是通过滚环扩增(RCA)在纳米粒子上原位生长的长单链 DNA 折叠而成的。我们设计了两种机制来实现分子加载到 3D 超结构上。在一种机制中,与靶分子结合的配体在 RCA 过程中被合并到生长的 DNA 中(合并机制)。在另一种机制中,靶分子被嵌入折纸折叠产生的双链 DNA 中(嵌入机制)。我们证明了所制备的 3D 超结构具有高的分子加载能力,并且它们分别能够实现信号报告分子和药物的高效运输,用于细胞成像和药物输送。