Suppr超能文献

经常锻炼者的自动评估与运动设置偏好

Automatic evaluations and exercise setting preference in frequent exercisers.

作者信息

Antoniewicz Franziska, Brand Ralf

机构信息

Department of Sport and Exercise Psychology, University of Potsdam, Potsdam, Germany.

出版信息

J Sport Exerc Psychol. 2014 Dec;36(6):631-6. doi: 10.1123/jsep.2014-0033.

Abstract

The goals of this study were to test whether exercise-related stimuli can elicit automatic evaluative responses and whether automatic evaluations reflect exercise setting preference in highly active exercisers. An adapted version of the Affect Misattribution Procedure was employed. Seventy-two highly active exercisers (26 years ± 9.03; 43% female) were subliminally primed (7 ms) with pictures depicting typical fitness center scenarios or gray rectangles (control primes). After each prime, participants consciously evaluated the "pleasantness" of a Chinese symbol. Controlled evaluations were measured with a questionnaire and were more positive in participants who regularly visited fitness centers than in those who reported avoiding this exercise setting. Only center exercisers gave automatic positive evaluations of the fitness center setting (partial eta squared = .08). It is proposed that a subliminal Affect Misattribution Procedure paradigm can elicit automatic evaluations to exercising and that, in highly active exercisers, these evaluations play a role in decisions about the exercise setting rather than the amounts of physical exercise. Findings are interpreted in terms of a dual systems theory of social information processing and behavior.

摘要

本研究的目的是测试与运动相关的刺激是否能引发自动评价反应,以及自动评价是否反映了高活跃度锻炼者对运动环境的偏好。采用了情感错误归因程序的改编版本。72名高活跃度锻炼者(年龄26岁±9.03;43%为女性)被阈下呈现(7毫秒)描绘典型健身中心场景的图片或灰色矩形(对照启动刺激)。每次启动刺激后,参与者有意识地评价一个中文符号的“愉悦度”。通过问卷测量控制性评价,经常去健身中心的参与者的评价比那些表示避开这种运动环境的参与者更积极。只有在健身中心锻炼的人对健身中心环境给出了自动的积极评价(偏 eta 平方 = 0.08)。研究表明,阈下情感错误归因程序范式能够引发对运动的自动评价,并且在高活跃度锻炼者中,这些评价在关于运动环境而非运动量的决策中发挥作用。研究结果依据社会信息加工和行为的双重系统理论进行解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验