Suppr超能文献

水合介质对离体角膜弹性测量的影响。

Impact of Hydration Media on Ex Vivo Corneal Elasticity Measurements.

作者信息

Dias Janice, Ziebarth Noël M

机构信息

Biomedical Atomic Force Microscopy Laboratory, Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL.

出版信息

Eye Contact Lens. 2015 Sep;41(5):281-6. doi: 10.1097/ICL.0000000000000119.

Abstract

OBJECTIVES

To determine the effect of hydration media on ex vivo corneal elasticity.

METHODS

Experiments were conducted on 40 porcine eyes retrieved from an abattoir (10 eyes each for phosphate-buffered saline (PBS), balanced salt solution, Optisol, 15% dextran). The epithelium was removed, and the cornea was excised with an intact scleral rim and placed in 20% dextran overnight to restore its physiological thickness. For each hydration media, corneas were evenly divided into two groups: one with an intact scleral rim and the other without. Corneas were mounted onto a custom chamber and immersed in a hydration medium for elasticity testing. Although in each medium, corneal elasticity measurements were performed for 2 hr: at 5-min intervals for the first 30 min and then 15-min intervals for the remaining 90 min. Elasticity testing was performed using nanoindentation with spherical indenters, and Young modulus was calculated using the Hertz model. Thickness measurements were taken before and after elasticity testing.

RESULTS

The percentage change in corneal thickness and elasticity was calculated for each hydration media group. Balanced salt solution, PBS, and Optisol showed an increase in thickness and Young moduli for corneas with and without an intact scleral rim. Fifteen percent dextran exhibited a dehydrating effect on corneal thickness and provided stable maintenance of corneal elasticity for both groups.

CONCLUSIONS

Hydration media affects the stability of corneal thickness and elasticity measurements over time. Fifteen percent dextran was most effective in maintaining corneal hydration and elasticity, followed by Optisol.

摘要

目的

确定水合介质对离体角膜弹性的影响。

方法

对从屠宰场获取的40只猪眼进行实验(每组10只眼,分别置于磷酸盐缓冲盐水(PBS)、平衡盐溶液、Optisol、15%右旋糖酐中)。去除上皮,将带有完整巩膜缘的角膜切除,置于20%右旋糖酐中过夜以恢复其生理厚度。对于每种水合介质,角膜均分为两组:一组带有完整巩膜缘,另一组没有。将角膜安装到定制的腔室中,浸入水合介质中进行弹性测试。虽然在每种介质中,角膜弹性测量持续2小时:前30分钟每隔5分钟测量一次,其余90分钟每隔15分钟测量一次。使用球形压头通过纳米压痕进行弹性测试,并使用赫兹模型计算杨氏模量。在弹性测试前后进行厚度测量。

结果

计算每个水合介质组角膜厚度和弹性的百分比变化。平衡盐溶液、PBS和Optisol显示,无论有无完整巩膜缘,角膜厚度和杨氏模量均增加。15%右旋糖酐对角膜厚度有脱水作用,且两组角膜弹性均能稳定维持。

结论

水合介质会影响角膜厚度和弹性测量随时间的稳定性。15%右旋糖酐在维持角膜水合和弹性方面最有效,其次是Optisol。

相似文献

1
Impact of Hydration Media on Ex Vivo Corneal Elasticity Measurements.
Eye Contact Lens. 2015 Sep;41(5):281-6. doi: 10.1097/ICL.0000000000000119.
2
Effect of hydration state and storage media on corneal biomechanical response from in vitro inflation tests.
J Refract Surg. 2013 Jul;29(7):490-7. doi: 10.3928/1081597X-20130617-08.
3
Effect of glucose on the stress-strain behavior of ex-vivo rabbit cornea.
Exp Eye Res. 2011 May;92(5):353-60. doi: 10.1016/j.exer.2011.02.005. Epub 2011 Feb 15.
4
Efficacy and safety of antifungal additives in Optisol-GS corneal storage medium.
JAMA Ophthalmol. 2014 Jul;132(7):832-7. doi: 10.1001/jamaophthalmol.2014.397.
8
Comparison of structural integrity and functional status of corneal endothelium stored in Cornisol and Optisol-GS.
Indian J Ophthalmol. 2019 Oct;67(10):1579-1584. doi: 10.4103/ijo.IJO_2026_18.
10
Prevention of keratocyte loss after corneal deepithelialization in rabbits.
Arch Ophthalmol. 1995 Apr;113(4):506-11. doi: 10.1001/archopht.1995.01100040128038.

引用本文的文献

2
Compressional Optical Coherence Elastography of the Cornea.
Photonics. 2021 Apr;8(4). doi: 10.3390/photonics8040111. Epub 2021 Apr 7.
3
In Vivo Determination of the Human Corneal Elastic Modulus Using Vibrational Optical Coherence Tomography.
Transl Vis Sci Technol. 2022 Jul 8;11(7):11. doi: 10.1167/tvst.11.7.11.
4
A review of corneal biomechanics: Mechanisms for measurement and the implications for refractive surgery.
Indian J Ophthalmol. 2020 Dec;68(12):2679-2690. doi: 10.4103/ijo.IJO_2146_20.
5
Detecting Mechanical Anisotropy of the Cornea Using Brillouin Microscopy.
Transl Vis Sci Technol. 2020 Jun 24;9(7):26. doi: 10.1167/tvst.9.7.26. eCollection 2020 Jun.
6
Ocular Pulse Elastography: Imaging Corneal Biomechanical Responses to Simulated Ocular Pulse Using Ultrasound.
Transl Vis Sci Technol. 2020 Jan 30;9(1):5. doi: 10.1167/tvst.9.1.5. eCollection 2020 Jan.
7
Collagen XII Is a Regulator of Corneal Stroma Structure and Function.
Invest Ophthalmol Vis Sci. 2020 May 11;61(5):61. doi: 10.1167/iovs.61.5.61.
8
Corneal Hydration Control during Ex Vivo Experimentation Using Poloxamers.
Curr Eye Res. 2020 Feb;45(2):111-117. doi: 10.1080/02713683.2019.1663387. Epub 2019 Sep 18.
10
Noninvasive Assessment of Corneal Crosslinking With Phase-Decorrelation Optical Coherence Tomography.
Invest Ophthalmol Vis Sci. 2019 Jan 2;60(1):41-51. doi: 10.1167/iovs.18-25535.

本文引用的文献

1
Measurement of corneal elasticity with an acoustic radiation force elasticity microscope.
Ultrasound Med Biol. 2014 Jul;40(7):1671-9. doi: 10.1016/j.ultrasmedbio.2013.11.009. Epub 2014 Apr 13.
2
Corneal biomechanical properties at different corneal cross-linking (CXL) irradiances.
Invest Ophthalmol Vis Sci. 2014 May 2;55(5):2881-4. doi: 10.1167/iovs.13-13748.
3
Supersonic shear wave elastography for the in vivo evaluation of transepithelial corneal collagen cross-linking.
Invest Ophthalmol Vis Sci. 2014 Mar 28;55(3):1976-84. doi: 10.1167/iovs.13-13445.
5
Effects of bathing solution on tensile properties of the cornea.
Exp Eye Res. 2014 Mar;120:103-8. doi: 10.1016/j.exer.2013.11.017. Epub 2013 Dec 10.
6
Elastic modulus and collagen organization of the rabbit cornea: epithelium to endothelium.
Acta Biomater. 2014 Feb;10(2):785-91. doi: 10.1016/j.actbio.2013.09.025. Epub 2013 Sep 29.
7
Anterior and posterior corneal stroma elasticity after corneal collagen crosslinking treatment.
Exp Eye Res. 2013 Nov;116:58-62. doi: 10.1016/j.exer.2013.07.028. Epub 2013 Aug 9.
8
Effect of hydration state and storage media on corneal biomechanical response from in vitro inflation tests.
J Refract Surg. 2013 Jul;29(7):490-7. doi: 10.3928/1081597X-20130617-08.
9
Anterior and posterior corneal stroma elasticity assessed using nanoindentation.
Exp Eye Res. 2013 Oct;115:41-6. doi: 10.1016/j.exer.2013.06.004. Epub 2013 Jun 22.
10
Corneal resistance to shear force after UVA-riboflavin cross-linking.
Invest Ophthalmol Vis Sci. 2013 Jul 26;54(7):5059-69. doi: 10.1167/iovs.12-10710.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验