Delaval Mathilde, Boland Sonja, Solhonne Brigitte, Nicola Marie-Anne, Mornet Stéphane, Baeza-Squiban Armelle, Sallenave Jean-Michel, Garcia-Verdugo Ignacio
Univ Paris Diderot. Sorbone Paris Cité. Unit of Functional and Adaptive Biology (BFA) UMR 8251, CNRS, Laboratory of Molecular and Cellular Responses to Xenobiotics, 5 rue Thomas Mann, 75013, Paris, France.
Unité de Défense Innée et Inflammation, Institut Pasteur, 25 rue du Dr Roux, 75015, Paris, France.
Part Fibre Toxicol. 2015 Jan 21;12(1):1. doi: 10.1186/s12989-014-0078-9.
The lung epithelium constitutes the first barrier against invading pathogens and also a major surface potentially exposed to nanoparticles. In order to ensure and preserve lung epithelial barrier function, the alveolar compartment possesses local defence mechanisms that are able to control bacterial infection. For instance, alveolar macrophages are professional phagocytic cells that engulf bacteria and environmental contaminants (including nanoparticles) and secrete pro-inflammatory cytokines to effectively eliminate the invading bacteria/contaminants. The consequences of nanoparticle exposure in the context of lung infection have not been studied in detail. Previous reports have shown that sequential lung exposure to nanoparticles and bacteria may impair bacterial clearance resulting in increased lung bacterial loads, associated with a reduction in the phagocytic capacity of alveolar macrophages.
Here we have studied the consequences of SiO2 nanoparticle exposure on Pseudomonas aeruginosa clearance, Pseudomonas aeruginosa-induced inflammation and lung injury in a mouse model of acute pneumonia. We observed that pre-exposure to SiO2 nanoparticles increased mice susceptibility to lethal pneumonia but did not modify lung clearance of a bioluminescent Pseudomonas aeruginosa strain. Furthermore, internalisation of SiO2 nanoparticles by primary alveolar macrophages did not reduce the capacity of the cells to clear Pseudomonas aeruginosa. In our murine model, SiO2 nanoparticle pre-exposure preferentially enhanced Pseudomonas aeruginosa-induced lung permeability (the latter assessed by the measurement of alveolar albumin and IgM concentrations) rather than contributing to Pseudomonas aeruginosa-induced lung inflammation (as measured by leukocyte recruitment and cytokine concentration in the alveolar compartment).
We show that pre-exposure to SiO2 nanoparticles increases mice susceptibility to lethal pneumonia but independently of macrophage phagocytic function. The deleterious effects of SiO2 nanoparticle exposure during Pseudomonas aeruginosa-induced pneumonia are related to alterations of the alveolar-capillary barrier rather than to modulation of the inflammatory responses.
肺上皮构成抵御入侵病原体的第一道屏障,也是可能大量接触纳米颗粒的主要表面。为确保并维持肺上皮屏障功能,肺泡腔具有能够控制细菌感染的局部防御机制。例如,肺泡巨噬细胞是专业的吞噬细胞,可吞噬细菌和环境污染物(包括纳米颗粒),并分泌促炎细胞因子以有效清除入侵的细菌/污染物。纳米颗粒暴露在肺部感染情况下的后果尚未得到详细研究。先前的报告表明,肺部先后接触纳米颗粒和细菌可能会损害细菌清除能力,导致肺部细菌载量增加,这与肺泡巨噬细胞吞噬能力的降低有关。
在此,我们在急性肺炎小鼠模型中研究了二氧化硅纳米颗粒暴露对铜绿假单胞菌清除、铜绿假单胞菌诱导的炎症和肺损伤的影响。我们观察到,预先暴露于二氧化硅纳米颗粒会增加小鼠对致命性肺炎的易感性,但不会改变生物发光铜绿假单胞菌菌株在肺部的清除情况。此外,原代肺泡巨噬细胞摄取二氧化硅纳米颗粒并不会降低细胞清除铜绿假单胞菌的能力。在我们的小鼠模型中,预先暴露于二氧化硅纳米颗粒优先增强了铜绿假单胞菌诱导的肺通透性(通过测量肺泡白蛋白和IgM浓度来评估),而不是导致铜绿假单胞菌诱导的肺部炎症(通过肺泡腔中的白细胞募集和细胞因子浓度来衡量)。
我们表明,预先暴露于二氧化硅纳米颗粒会增加小鼠对致命性肺炎的易感性,但与巨噬细胞吞噬功能无关。在铜绿假单胞菌诱导的肺炎期间,二氧化硅纳米颗粒暴露的有害影响与肺泡 - 毛细血管屏障的改变有关,而不是与炎症反应的调节有关。