Kolb Philipp, Vorreiter Jolanta, Habicht Jüri, Bentrop Detlef, Wallich Reinhard, Nassal Michael
University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany ; University of Freiburg, Biological Faculty, Schänzlestr. 1, D-79104 Freiburg, Germany.
University Hospital Freiburg, Internal Medicine 2/Molecular Biology, Hugstetter Str. 55, D-79106 Freiburg, Germany.
FEBS Open Bio. 2014 Dec 24;5:42-55. doi: 10.1016/j.fob.2014.12.002. eCollection 2015.
Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodes ricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmission. Hence, Salp15 proteins are attractive targets for anti-tick vaccines that also target borreliae. However, recombinant Salp proteins are not accessible in sufficient quantity for either vaccine manufacturing or for structural characterization. As an alternative to low-yield eukaryotic systems, we investigated cytoplasmic expression in Escherichia coli, even though this would not result in glycosylation. His-tagged Salp15 was efficiently expressed but insoluble. Among the various solubility-enhancing protein tags tested, DsbA was superior, yielding milligram amounts of soluble, monomeric Salp15 and Iric-1 fusions. Easily accessible mutants enabled epitope mapping of two monoclonal antibodies that, importantly, cross-react with glycosylated Salp15, and revealed interaction sites with OspC. Free Salp15 and Iric-1 from protease-cleavable fusions, despite limited solubility, allowed the recording of (1)H-(15)N 2D NMR spectra, suggesting partial folding of the wild-type proteins but not of Cys-free variants. Fusion to the NMR-compatible GB1 domain sufficiently enhanced solubility to reveal first secondary structure elements in (13)C/(15)N double-labeled Iric-1. Together, E. coli expression of appropriately fused Salp15 proteins may be highly valuable for the molecular characterization of the function and eventually the 3D structure of these medically relevant tick proteins.
蜱虫传播多种病原体,包括导致莱姆病的疏螺旋体。蜱虫唾液含有多种抗宿主防御因子的复杂混合物,包括来自肩突硬蜱的免疫抑制性富含半胱氨酸的分泌糖蛋白Salp15以及来自蓖麻硬蜱的Iric-1等同源物。所有蜱传微生物都受益于蜱叮咬部位的免疫抑制;此外,疏螺旋体利用Salp15与它们的外膜蛋白C(OspC)的结合来增强传播。因此,Salp15蛋白是抗蜱疫苗以及抗疏螺旋体疫苗的有吸引力的靶点。然而,重组Salp蛋白的产量不足以用于疫苗生产或结构表征。作为低产真核系统的替代方法,我们研究了其在大肠杆菌中的细胞质表达,尽管这不会导致糖基化。带有His标签的Salp15高效表达但不溶。在所测试的各种增强溶解性的蛋白标签中,DsbA表现出色,可产生毫克量的可溶性单体Salp15和Iric-1融合蛋白。易于获得的突变体可用于两种单克隆抗体的表位作图,重要的是,这两种单克隆抗体与糖基化的Salp15发生交叉反应,并揭示了与OspC的相互作用位点。来自蛋白酶可裂解融合蛋白的游离Salp15和Iric-1,尽管溶解性有限,但仍可记录(1)H-(15)N二维核磁共振谱,表明野生型蛋白有部分折叠,而无半胱氨酸变体则没有。与核磁共振兼容的GB1结构域融合可充分提高溶解性,从而在(13)C/(15)N双标记的Iric-1中揭示出最初的二级结构元件。总之,适当融合的Salp15蛋白在大肠杆菌中的表达对于这些与医学相关的蜱虫蛋白的功能分子表征以及最终的三维结构研究可能具有很高的价值。