Suppr超能文献

细胞力推断工具包(CellFIT)的实际应用

Practical aspects of the cellular force inference toolkit (CellFIT).

作者信息

Veldhuis Jim H, Mashburn David, Hutson M Shane, Brodland G Wayne

机构信息

Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada.

Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, USA.

出版信息

Methods Cell Biol. 2015;125:331-51. doi: 10.1016/bs.mcb.2014.10.010. Epub 2015 Jan 8.

Abstract

If we are to fully understand the reasons that cells and tissues move and acquire their distinctive geometries during processes such as embryogenesis and wound healing, we will need detailed maps of the forces involved. One of the best current prospects for obtaining this information is noninvasive force-from-images techniques such as CellFIT, the Cellular Force Inference Toolkit, whose various steps are discussed here. Like other current quasistatic approaches, this one assumes that cell shapes are produced by interactions between interfacial tensions and intracellular pressures. CellFIT, however, allows cells to have curvilinear boundaries, which can significantly improve inference accuracy and reduce noise sensitivity. The quality of a CellFIT analysis depends on how accurately the junction angles and edge curvatures are measured, and a software tool we describe facilitates determination and evaluation of this information. Special attention is required when edges are crenulated or significantly different in shape from a circular arc. Because the tension and pressure equations are overdetermined, a select number of edges can be removed from the analysis, and these might include edges that are poorly defined in the source image, too short to provide accurate angles or curvatures, or noncircular. The approach works well for aggregates with as many as 1000 cells, and introduced errors have significant effects on only a few adjacent cells. An understanding of these considerations will help CellFIT users to get the most out of this promising new technique.

摘要

如果我们要全面理解细胞和组织在胚胎发育和伤口愈合等过程中移动并形成其独特几何形状的原因,我们将需要涉及的力的详细图谱。获取此类信息目前最有前景的方法之一是诸如CellFIT(细胞力推断工具包)之类的无创图像测力技术,本文将讨论其各个步骤。与其他当前的准静态方法一样,该方法假定细胞形状是由界面张力和细胞内压力之间的相互作用产生的。然而,CellFIT允许细胞具有曲线边界,这可以显著提高推断准确性并降低噪声敏感性。CellFIT分析的质量取决于连接角和边缘曲率的测量精度,我们描述的一种软件工具有助于确定和评估此信息。当边缘呈锯齿状或形状与圆弧明显不同时,需要特别注意。由于张力和压力方程是超定的,可以从分析中去除选定数量的边缘,这些边缘可能包括在源图像中定义不清晰、太短而无法提供准确角度或曲率的边缘,或者非圆形边缘。该方法对多达1000个细胞的聚集体效果良好,引入的误差仅对少数相邻细胞有显著影响。了解这些注意事项将有助于CellFIT用户充分利用这项有前途的新技术。

相似文献

1
Practical aspects of the cellular force inference toolkit (CellFIT).细胞力推断工具包(CellFIT)的实际应用
Methods Cell Biol. 2015;125:331-51. doi: 10.1016/bs.mcb.2014.10.010. Epub 2015 Jan 8.
3
Inferring cellular forces from image stacks.从图像堆栈中推断细胞力。
Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2016.0261.
4
Comparative study of non-invasive force and stress inference methods in tissue.组织中无创力与应力推断方法的比较研究
Eur Phys J E Soft Matter. 2013 Apr;36(4):9859. doi: 10.1140/epje/i2013-13045-8. Epub 2013 Apr 26.
9
Robustness of force and stress inference in an epithelial tissue.上皮组织中力与应力推断的稳健性。
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2712-5. doi: 10.1109/EMBC.2013.6610100.

引用本文的文献

1
Apico-basal intercalations enable the integrity of curved epithelia.顶端-基底间的嵌入连接确保了弯曲上皮组织的完整性。
Comput Struct Biotechnol J. 2025 Mar 19;27:1204-1214. doi: 10.1016/j.csbj.2025.03.011. eCollection 2025.
2
Measuring mechanical stress in living tissues.测量活组织中的机械应力。
Nat Rev Phys. 2020 May 28;2(6):300-317. doi: 10.1038/s42254-020-0184-6.
6
The role of traction in membrane curvature generation.牵引在膜曲率生成中的作用。
Mol Biol Cell. 2018 Aug 8;29(16):2024-2035. doi: 10.1091/mbc.E18-02-0087. Epub 2018 Jul 25.
8
In Vitro Modeling of Mechanics in Cancer Metastasis.癌症转移中力学的体外建模
ACS Biomater Sci Eng. 2018 Feb 12;4(2):294-301. doi: 10.1021/acsbiomaterials.7b00041. Epub 2017 May 16.
9
Quantifying forces in cell biology.量化细胞生物学中的力。
Nat Cell Biol. 2017 Jul;19(7):742-751. doi: 10.1038/ncb3564. Epub 2017 Jun 19.
10
Inferring cellular forces from image stacks.从图像堆栈中推断细胞力。
Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2016.0261.

本文引用的文献

5
Comparative study of non-invasive force and stress inference methods in tissue.组织中无创力与应力推断方法的比较研究
Eur Phys J E Soft Matter. 2013 Apr;36(4):9859. doi: 10.1140/epje/i2013-13045-8. Epub 2013 Apr 26.
6
Bayesian inference of force dynamics during morphogenesis.贝叶斯推断形态发生过程中的力动力学。
J Theor Biol. 2012 Nov 21;313:201-11. doi: 10.1016/j.jtbi.2012.08.017. Epub 2012 Aug 24.
10
Mechanical stress inference for two dimensional cell arrays.二维细胞阵列的机械应力推断。
PLoS Comput Biol. 2012;8(5):e1002512. doi: 10.1371/journal.pcbi.1002512. Epub 2012 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验