Veldhuis Jim H, Ehsandar Ahmad, Maître Jean-Léon, Hiiragi Takashi, Cox Simon, Brodland G Wayne
Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Department of Genetics and Developmental Biology, Institut Curie, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
Philos Trans R Soc Lond B Biol Sci. 2017 May 19;372(1720). doi: 10.1098/rstb.2016.0261.
Although the importance of cellular forces to a wide range of embryogenesis and disease processes is widely recognized, measuring these forces is challenging, especially in three dimensions. Here, we introduce CellFIT-3D, a force inference technique that allows tension maps for three-dimensional cellular systems to be estimated from image stacks. Like its predecessors, video force microscopy and CellFIT, this cell mechanics technique assumes boundary-specific interfacial tensions to be the primary drivers, and it constructs force-balance equations based on triple junction (TJ) dihedral angles. The technique involves image processing, segmenting of cells, grouping of cell outlines, calculation of dihedral planes, averaging along three-dimensional TJs, and matrix equation assembly and solution. The equations tend to be strongly overdetermined, allowing indistinct TJs to be ignored and solution error estimates to be determined. Application to clean and noisy synthetic data generated using Surface Evolver gave tension errors of 1.6-7%, and analyses of eight-cell murine embryos gave estimated errors smaller than the 10% uncertainty of companion aspiration experiments. Other possible areas of application include morphogenesis, cancer metastasis and tissue engineering.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'.
尽管细胞力在广泛的胚胎发育和疾病过程中的重要性已得到广泛认可,但测量这些力具有挑战性,尤其是在三维空间中。在此,我们介绍CellFIT-3D,这是一种力推断技术,可根据图像堆栈估计三维细胞系统的张力图。与它的前身视频力显微镜和CellFIT一样,这种细胞力学技术假定边界特定的界面张力是主要驱动力,并基于三叉点(TJ)二面角构建力平衡方程。该技术包括图像处理、细胞分割、细胞轮廓分组、二面角平面计算、沿三维TJ平均以及矩阵方程组装和求解。这些方程往往是高度超定的,这使得不清晰的TJ可以被忽略,并能确定解的误差估计。应用于使用Surface Evolver生成的干净和有噪声的合成数据时,张力误差为1.6%-7%,对八细胞小鼠胚胎的分析给出的估计误差小于伴随抽吸实验10%的不确定性。其他可能的应用领域包括形态发生、癌症转移和组织工程。本文是主题为“系统形态动力学:理解组织硬件的发育”的特刊的一部分。