Department of Chemistry, James Madison University, Harrisonburg, VA 22807, USA.
Department of Engineering, James Madison University, Harrisonburg, VA 22807, USA.
Integr Comp Biol. 2023 Dec 29;63(6):1532-1542. doi: 10.1093/icb/icad107.
The shift of funding organizations to prioritize interdisciplinary work points to the need for workflow models that better accommodate interdisciplinary studies. Most scientists are trained in a specific field and are often unaware of the kind of insights that other disciplines could contribute to solving various problems. In this paper, we present a perspective on how we developed an experimental pipeline between a microscopy and image analysis/bioengineering lab. Specifically, we connected microscopy observations about a putative mechanosensing protein, obscurin, to image analysis techniques that quantify cell changes. While the individual methods used are well established (fluorescence microscopy; ImageJ WEKA and mTrack2 programs; MATLAB), there are no existing best practices for how to integrate these techniques into a cohesive, interdisciplinary narrative. Here, we describe a broadly applicable workflow of how microscopists can more easily quantify cell properties (e.g., perimeter, velocity) from microscopy videos of eukaryotic (MDCK) adherent cells. Additionally, we give examples of how these foundational measurements can create more complex, customizable cell mechanics tools and models.
资金组织向优先考虑跨学科工作的转变表明,需要采用更好地适应跨学科研究的工作流程模型。大多数科学家都在特定领域接受过培训,往往不知道其他学科可以为解决各种问题提供什么样的见解。在本文中,我们介绍了我们如何在显微镜和图像分析/生物工程实验室之间开发实验管道的观点。具体来说,我们将关于假定的机械感觉蛋白 obscurin 的显微镜观察结果与定量细胞变化的图像分析技术联系起来。虽然使用的个别方法已经成熟(荧光显微镜;ImageJ WEKA 和 mTrack2 程序;MATLAB),但目前还没有将这些技术集成到一个连贯的跨学科叙述中的最佳实践。在这里,我们描述了一种广泛适用的工作流程,显微镜研究人员可以更轻松地从真核(MDCK)贴壁细胞的显微镜视频中量化细胞特性(例如,周长、速度)。此外,我们还举例说明了这些基础测量如何创建更复杂、可定制的细胞力学工具和模型。