Suppr超能文献

鼠伤寒沙门氏菌抵抗阳离子抗菌肽杀伤的策略。

S. Typhimurium strategies to resist killing by cationic antimicrobial peptides.

作者信息

Matamouros Susana, Miller Samuel I

机构信息

Departments of Microbiology, University of Washington, Seattle, WA 98195, USA.

Departments of Microbiology, University of Washington, Seattle, WA 98195, USA; Departments of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Medicine, University of Washington, Seattle, WA 98195, USA.

出版信息

Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3021-5. doi: 10.1016/j.bbamem.2015.01.013. Epub 2015 Jan 30.

Abstract

S. Typhimurium is a broad host range Gram-negative pathogen that must evade killing by host innate immune systems to colonize, replicate, cause disease, and be transmitted to other hosts. A major pathogenic strategy of Salmonellae is entrance, survival, and replication within eukaryotic cell phagocytic vacuoles. These phagocytic vacuoles and gastrointestinal mucosal surfaces contain multiple cationic antimicrobial peptides (CAMPs) which control invading bacteria. S. Typhimurium possesses several key mechanisms to resist killing by CAMPs which involve sensing CAMPs and membrane damage to activate signaling cascades that result in remodeling of the bacterial envelope to reduce its overall negative charge with an increase in hydrophobicity to decrease binding and effectiveness of CAMPs. Moreover Salmonellae have additional mechanisms to resist killing by CAMPs including an outer membrane protease which targets cationic peptides at the surface, and specific efflux pumps which protect the inner membrane from damage. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

摘要

鼠伤寒沙门氏菌是一种宿主范围广泛的革兰氏阴性病原体,它必须逃避宿主先天免疫系统的杀伤才能进行定植、复制、致病并传播给其他宿主。沙门氏菌的主要致病策略是进入、存活于真核细胞吞噬泡内并在其中复制。这些吞噬泡和胃肠道黏膜表面含有多种控制入侵细菌的阳离子抗菌肽(CAMP)。鼠伤寒沙门氏菌拥有多种关键机制来抵抗CAMP的杀伤,这涉及感知CAMP和膜损伤以激活信号级联反应,从而导致细菌包膜重塑,降低其总体负电荷并增加疏水性,以减少CAMP的结合和有效性。此外,沙门氏菌还有其他抵抗CAMP杀伤的机制,包括一种靶向表面阳离子肽的外膜蛋白酶,以及保护内膜免受损伤的特定外排泵。本文是名为“细菌对抗菌肽的抗性”的特刊的一部分。

相似文献

1
S. Typhimurium strategies to resist killing by cationic antimicrobial peptides.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3021-5. doi: 10.1016/j.bbamem.2015.01.013. Epub 2015 Jan 30.
2
Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3047-54. doi: 10.1016/j.bbamem.2015.02.010. Epub 2015 Feb 17.
3
Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3089-100. doi: 10.1016/j.bbamem.2015.05.022. Epub 2015 Jun 4.
4
Antimicrobial peptide resistance in Neisseria meningitidis.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3026-31. doi: 10.1016/j.bbamem.2015.05.006. Epub 2015 May 19.
5
[Outer membrane remodeling of Salmonella typhimurium and host innate immunity].
Yakugaku Zasshi. 2006 Dec;126(12):1227-34. doi: 10.1248/yakushi.126.1227.
6
Mechanisms of resistance to antimicrobial peptides in staphylococci.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3055-61. doi: 10.1016/j.bbamem.2015.02.009. Epub 2015 Feb 17.
7
Salmonella Typhimurium PagP- and UgtL-dependent resistance to antimicrobial peptides contributes to the gut colonization.
PLoS One. 2017 Dec 21;12(12):e0190095. doi: 10.1371/journal.pone.0190095. eCollection 2017.
8
Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages.
Immunol Rev. 2007 Oct;219:55-65. doi: 10.1111/j.1600-065X.2007.00557.x.
9
On the in vivo significance of bacterial resistance to antimicrobial peptides.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3101-11. doi: 10.1016/j.bbamem.2015.02.012. Epub 2015 Feb 18.
10
Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3062-71. doi: 10.1016/j.bbamem.2015.04.014. Epub 2015 Apr 29.

引用本文的文献

1
Defense mechanisms of against antibiotics: a review.
Front Antibiot. 2024 Sep 17;3:1448796. doi: 10.3389/frabi.2024.1448796. eCollection 2024.
2
Exploration of novel cationic amino acid-enriched short peptides: design, SPPS, biological evaluation and study.
RSC Adv. 2024 Jun 3;14(25):17710-17723. doi: 10.1039/d3ra08313f. eCollection 2024 May 28.
3
Peeling back the many layers of competitive exclusion.
Front Microbiol. 2024 Mar 21;15:1342887. doi: 10.3389/fmicb.2024.1342887. eCollection 2024.
4
From to Typhi: The Fascinating Journey of the Virulence and Pathogenicity of Typhi.
ACS Omega. 2023 Jul 14;8(29):25674-25697. doi: 10.1021/acsomega.3c02386. eCollection 2023 Jul 25.
6
Factors Required for Adhesion of Salmonella enterica Serovar Typhimurium to Lactuca sativa (Lettuce).
Microbiol Spectr. 2023 Feb 14;11(1):e0343622. doi: 10.1128/spectrum.03436-22. Epub 2022 Dec 19.
7
The rpoS gene confers resistance to low osmolarity conditions in Salmonella enterica serovar Typhi.
PLoS One. 2022 Dec 16;17(12):e0279372. doi: 10.1371/journal.pone.0279372. eCollection 2022.
10
A small molecule that disrupts S. Typhimurium membrane voltage without cell lysis reduces bacterial colonization of mice.
PLoS Pathog. 2022 Jun 10;18(6):e1010606. doi: 10.1371/journal.ppat.1010606. eCollection 2022 Jun.

本文引用的文献

1
PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane.
Proc Natl Acad Sci U S A. 2014 Feb 4;111(5):1963-8. doi: 10.1073/pnas.1316901111. Epub 2014 Jan 21.
3
Reciprocal control between a bacterium's regulatory system and the modification status of its lipopolysaccharide.
Mol Cell. 2012 Sep 28;47(6):897-908. doi: 10.1016/j.molcel.2012.07.017. Epub 2012 Aug 23.
5
Antimicrobial peptides activate the Rcs regulon through the outer membrane lipoprotein RcsF.
J Bacteriol. 2010 Oct;192(19):4894-903. doi: 10.1128/JB.00505-10. Epub 2010 Jul 30.
6
Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides.
Mol Microbiol. 2010 Jun;76(6):1444-60. doi: 10.1111/j.1365-2958.2010.07150.x. Epub 2010 Apr 1.
7
Effect of the O-antigen length of lipopolysaccharide on the functions of Type III secretion systems in Salmonella enterica.
Infect Immun. 2009 Dec;77(12):5458-70. doi: 10.1128/IAI.00871-09. Epub 2009 Sep 21.
8
Determination of pyrophosphorylated forms of lipid A in Gram-negative bacteria using a multivaried mass spectrometric approach.
Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12742-7. doi: 10.1073/pnas.0800445105. Epub 2008 Aug 27.
9
Activation of the bacterial sensor kinase PhoQ by acidic pH.
Mol Cell. 2007 Apr 27;26(2):165-74. doi: 10.1016/j.molcel.2007.03.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验