Suppr超能文献

链球菌病原体的阳离子抗菌肽耐药机制

Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens.

作者信息

LaRock Christopher N, Nizet Victor

机构信息

Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.

Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Medicine and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Rady Children's Hospital, San Diego, CA, USA.

出版信息

Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3047-54. doi: 10.1016/j.bbamem.2015.02.010. Epub 2015 Feb 17.

Abstract

Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

摘要

阳离子抗菌肽(CAMP)是宿主抵御侵袭性细菌感染的关键一线防御因子。这些免疫因子对微生物具有直接杀伤活性,但许多病原体能够抵抗其作用。A组链球菌、B组链球菌和肺炎链球菌是人类最常见的病原体,它们表现出多种表型适应性以抵抗CAMP。致病性链球菌中CAMP抗性机制的共同主题包括排斥、隔离、输出和破坏。每种病原体都有不同的CAMP抗性机制组合,侵袭性疾病的潜力反映了可能协同作用的几种机制的利用情况。在此,我们讨论了在确定医学上重要的链球菌属中CAMP抗性来源方面的最新进展。对这些机制的进一步研究有助于我们理解链球菌的发病机制,并可能为治疗和疾病预防提供新的治疗靶点。本文是名为“细菌对抗菌肽的抗性”的特刊的一部分。

相似文献

1
Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens.链球菌病原体的阳离子抗菌肽耐药机制
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3047-54. doi: 10.1016/j.bbamem.2015.02.010. Epub 2015 Feb 17.
2
S. Typhimurium strategies to resist killing by cationic antimicrobial peptides.鼠伤寒沙门氏菌抵抗阳离子抗菌肽杀伤的策略。
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3021-5. doi: 10.1016/j.bbamem.2015.01.013. Epub 2015 Jan 30.
3
Mechanisms of resistance to antimicrobial peptides in staphylococci.葡萄球菌中对抗菌肽的耐药机制。
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3055-61. doi: 10.1016/j.bbamem.2015.02.009. Epub 2015 Feb 17.
4
On the in vivo significance of bacterial resistance to antimicrobial peptides.论细菌对抗菌肽耐药性的体内意义。
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3101-11. doi: 10.1016/j.bbamem.2015.02.012. Epub 2015 Feb 18.
5
Antimicrobial peptide resistance in Neisseria meningitidis.脑膜炎奈瑟菌中的抗菌肽耐药性。
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3026-31. doi: 10.1016/j.bbamem.2015.05.006. Epub 2015 May 19.

引用本文的文献

1
Pentamidine inhibition of streptopain attenuates virulence.喷他脒对链霉蛋白酶的抑制作用减弱了毒力。
Microbiol Spectr. 2025 Aug 5;13(8):e0075825. doi: 10.1128/spectrum.00758-25. Epub 2025 Jun 23.
8
Anti-Staphy Peptides Rationally Designed from Cry10Aa Bacterial Protein.基于Cry10Aa细菌蛋白合理设计的抗葡萄球菌肽。
ACS Omega. 2024 Jun 19;9(27):29159-29174. doi: 10.1021/acsomega.3c07455. eCollection 2024 Jul 9.
9
glycolipids promote virulence by thwarting immune cell clearance.糖脂通过阻止免疫细胞清除来促进毒力。
Sci Adv. 2024 May 31;10(22):eadn7848. doi: 10.1126/sciadv.adn7848. Epub 2024 May 29.
10
in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance.水产养殖中的发病机制、毒力和抗生素耐药性综述
Int J Vet Sci Med. 2024 May 13;12(1):25-38. doi: 10.1080/23144599.2024.2348408. eCollection 2024.

本文引用的文献

6
Pneumococcal infection in adults: burden of disease.成人肺炎链球菌感染:疾病负担。
Clin Microbiol Infect. 2014 May;20 Suppl 5:45-51. doi: 10.1111/1469-0691.12461. Epub 2014 Jan 24.
7
The spectrum of perinatal group B streptococcal disease.围产期 B 群链球菌病的谱。
Vaccine. 2013 Aug 28;31 Suppl 4:D3-6. doi: 10.1016/j.vaccine.2013.02.030.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验