Suppr超能文献

脑膜炎奈瑟菌中的抗菌肽耐药性。

Antimicrobial peptide resistance in Neisseria meningitidis.

作者信息

Tzeng Yih-Ling, Stephens David S

机构信息

Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA.

Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; Laboratories of Microbial Pathogenesis, Medical Research Service, Veterans Affairs Medical Center, Decatur, GA 30033, USA.

出版信息

Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3026-31. doi: 10.1016/j.bbamem.2015.05.006. Epub 2015 May 19.

Abstract

Antimicrobial peptides (AMPs) play an important role as a host defense against microbial pathogens and are key components of the human innate immune response. Neisseria meningitidis frequently colonizes the human nasopharynx as a commensal but also is a worldwide cause of epidemic meningitis and rapidly fatal sepsis. In the human respiratory tract, the only known reservoir of N. meningitidis, meningococci are exposed to human endogenous AMPs. Thus, it is not surprising that meningococci have evolved effective mechanisms to confer intrinsic and high levels of resistance to the action of AMPs. This article reviews the current knowledge about AMP resistance mechanisms employed by N. meningitidis. Two major resistance mechanisms employed by meningococci are the constitutive modification of the lipid A head groups of lipooligosaccharides by phosphoethanolamine and the active efflux pump mediated excretion of AMPs. Other factors influencing AMP resistance, such as the major porin PorB, the pilin biogenesis apparatus, and capsular polysaccharides, have also been identified. Even with an inherently high intrinsic resistance, several AMP resistance determinants can be further induced upon exposure to AMPs. Many well-characterized AMP resistance mechanisms in other Gram-negative bacteria are not found in meningococci. Thus, N. meningitidis utilizes a limited but highly effective set of molecular mechanisms to mediate antimicrobial peptide resistance. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.

摘要

抗菌肽(AMPs)作为宿主抵御微生物病原体的防御机制发挥着重要作用,是人类固有免疫反应的关键组成部分。脑膜炎奈瑟菌常作为共生菌定殖于人类鼻咽部,但也是全球流行性脑膜炎和迅速致命性败血症的病因。在人类呼吸道这一已知的脑膜炎奈瑟菌唯一储存库中,脑膜炎球菌会接触到人类内源性抗菌肽。因此,脑膜炎球菌进化出有效机制以赋予其对抗菌肽作用的固有且高水平抗性也就不足为奇了。本文综述了目前关于脑膜炎奈瑟菌所采用的抗菌肽抗性机制方面的知识。脑膜炎球菌采用的两种主要抗性机制是通过磷酸乙醇胺对脂寡糖的脂质A头部基团进行组成性修饰以及通过主动外排泵介导抗菌肽的排泄。其他影响抗菌肽抗性的因素,如主要孔蛋白PorB、菌毛生物合成装置和荚膜多糖,也已被确定。即使具有固有的高内在抗性,在接触抗菌肽后,几种抗菌肽抗性决定因素仍可进一步被诱导。在其他革兰氏阴性菌中许多已被充分表征的抗菌肽抗性机制在脑膜炎球菌中并未发现。因此,脑膜炎奈瑟菌利用一套有限但高效的分子机制来介导对抗菌肽的抗性。本文是名为“细菌对抗菌肽的抗性”的特刊一部分。

相似文献

1
Antimicrobial peptide resistance in Neisseria meningitidis.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3026-31. doi: 10.1016/j.bbamem.2015.05.006. Epub 2015 May 19.
2
Defensive remodeling: How bacterial surface properties and biofilm formation promote resistance to antimicrobial peptides.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3089-100. doi: 10.1016/j.bbamem.2015.05.022. Epub 2015 Jun 4.
3
Mechanisms of resistance to antimicrobial peptides in staphylococci.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3055-61. doi: 10.1016/j.bbamem.2015.02.009. Epub 2015 Feb 17.
4
Cationic antimicrobial peptide resistance in Neisseria meningitidis.
J Bacteriol. 2005 Aug;187(15):5387-96. doi: 10.1128/JB.187.15.5387-5396.2005.
5
S. Typhimurium strategies to resist killing by cationic antimicrobial peptides.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3021-5. doi: 10.1016/j.bbamem.2015.01.013. Epub 2015 Jan 30.
6
On the in vivo significance of bacterial resistance to antimicrobial peptides.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3101-11. doi: 10.1016/j.bbamem.2015.02.012. Epub 2015 Feb 18.
7
The MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae.
Antimicrob Agents Chemother. 2016 Jul 22;60(8):4690-700. doi: 10.1128/AAC.00823-16. Print 2016 Aug.
8
Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3062-71. doi: 10.1016/j.bbamem.2015.04.014. Epub 2015 Apr 29.
9
Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens.
Biochim Biophys Acta. 2015 Nov;1848(11 Pt B):3047-54. doi: 10.1016/j.bbamem.2015.02.010. Epub 2015 Feb 17.
10
Peptidoglycan fragment release from Neisseria meningitidis.
Infect Immun. 2013 Sep;81(9):3490-8. doi: 10.1128/IAI.00279-13. Epub 2013 Jul 8.

引用本文的文献

1
Management and prevention of Neisseria meningitidis and Neisseria gonorrhoeae infections in the context of evolving antimicrobial resistance trends.
Eur J Clin Microbiol Infect Dis. 2025 Feb;44(2):233-250. doi: 10.1007/s10096-024-04968-8. Epub 2024 Nov 27.
2
Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review.
Microorganisms. 2024 Jun 21;12(7):1259. doi: 10.3390/microorganisms12071259.
3
Bacteriophage steering of toward reduced virulence and increased antibiotic sensitivity.
J Bacteriol. 2023 Oct 26;205(10):e0019623. doi: 10.1128/jb.00196-23. Epub 2023 Oct 4.
4
Evaluation of human β‑defensins in the cerebrospinal fluid of suspected meningitis.
Biomed Rep. 2022 Nov 30;18(1):10. doi: 10.3892/br.2022.1592. eCollection 2023 Jan.
6
The Host-Pathogen Interactions and Epicellular Lifestyle of .
Front Cell Infect Microbiol. 2022 Apr 22;12:862935. doi: 10.3389/fcimb.2022.862935. eCollection 2022.
7
Emergence of a novel urogenital-tropic Neisseria meningitidis.
Curr Opin Infect Dis. 2021 Feb 1;34(1):34-39. doi: 10.1097/QCO.0000000000000697.
9
A Rare Mutation in SPLUNC1 Affects Bacterial Adherence and Invasion in Meningococcal Disease.
Clin Infect Dis. 2020 May 6;70(10):2045-2053. doi: 10.1093/cid/ciz600.
10
Top-Down Characterization of Lipooligosaccharides from Antibiotic-Resistant Bacteria.
Anal Chem. 2019 Aug 6;91(15):9608-9615. doi: 10.1021/acs.analchem.9b00940. Epub 2019 Jul 26.

本文引用的文献

3
Membrane disruptive antimicrobial activities of human β-defensin-3 analogs.
Eur J Med Chem. 2015 Feb 16;91:91-9. doi: 10.1016/j.ejmech.2014.08.021. Epub 2014 Aug 7.
4
The specificity of protection against cationic antimicrobial peptides by lactoferrin binding protein B.
Biometals. 2014 Oct;27(5):923-33. doi: 10.1007/s10534-014-9767-y. Epub 2014 Jul 20.
6
Phase-variable expression of lptA modulates the resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides.
Antimicrob Agents Chemother. 2014 Jul;58(7):4230-3. doi: 10.1128/AAC.03108-14. Epub 2014 May 12.
7
The negatively charged regions of lactoferrin binding protein B, an adaptation against anti-microbial peptides.
PLoS One. 2014 Jan 20;9(1):e86243. doi: 10.1371/journal.pone.0086243. eCollection 2014.
8
Antimicrobial peptides: new drugs for bad bugs?
Expert Opin Biol Ther. 2014 Jan;14(1):11-4. doi: 10.1517/14712598.2013.844227. Epub 2013 Nov 11.
9
Role of Neisseria meningitidis PorA and PorB expression in antimicrobial susceptibility.
Antimicrob Agents Chemother. 2014;58(1):614-6. doi: 10.1128/AAC.02506-12. Epub 2013 Oct 21.
10
Unique structural modifications are present in the lipopolysaccharide from colistin-resistant strains of Acinetobacter baumannii.
Antimicrob Agents Chemother. 2013 Oct;57(10):4831-40. doi: 10.1128/AAC.00865-13. Epub 2013 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验