Emaminejad Sam, Javanmard Mehdi, Gupta Chaitanya, Chang Shuai, Davis Ronald W, Howe Roger T
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720; Stanford Genome Technology Center, Stanford School of Medicine, Palo Alto, CA 94304;
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ 08854; and
Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):1995-9. doi: 10.1073/pnas.1424592112. Epub 2015 Feb 3.
The controlled immobilization of proteins on solid-state surfaces can play an important role in enhancing the sensitivity of both affinity-based biosensors and probe-free sensing platforms. Typical methods of controlling the orientation of probe proteins on a sensor surface involve surface chemistry-based techniques. Here, we present a method of tunably controlling the immobilization of proteins on a solid-state surface using electric field. We study the ability to orient molecules by immobilizing IgG molecules in microchannels while applying lateral fields. We use atomic force microscopy to both qualitatively and quantitatively study the orientation of antibodies on glass surfaces. We apply this ability for controlled orientation to enhance the performance of affinity-based assays. As a proof of concept, we use fluorescence detection to indirectly verify the modulation of the orientation of proteins bound to the surface. We studied the interaction of fluorescently tagged anti-IgG with surface immobilized IgG controlled by electric field. Our study demonstrates that the use of electric field can result in more than 100% enhancement in signal-to-noise ratio compared with normal physical adsorption.
蛋白质在固态表面的可控固定对于提高基于亲和力的生物传感器和无探针传感平台的灵敏度都具有重要作用。在传感器表面控制探针蛋白取向的典型方法涉及基于表面化学的技术。在此,我们提出一种利用电场在固态表面可调谐地控制蛋白质固定的方法。我们研究了在施加横向电场时将IgG分子固定在微通道中以定向分子的能力。我们使用原子力显微镜从定性和定量两方面研究玻璃表面抗体的取向。我们将这种可控取向的能力应用于增强基于亲和力的检测性能。作为概念验证,我们使用荧光检测间接验证与表面结合的蛋白质取向的调制。我们研究了荧光标记的抗IgG与电场控制的表面固定IgG之间的相互作用。我们的研究表明,与正常物理吸附相比,使用电场可使信噪比提高100%以上。