Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden.
1] Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-751 24 Uppsala, Sweden [2] Lawrence Berkeley National Lab, 1 Cyclotron Road Mail Stop 943-256, Berkeley, California 94720, USA.
Nat Commun. 2015 Feb 11;6:5704. doi: 10.1038/ncomms6704.
There exists a conspicuous gap of knowledge about the organization of life at mesoscopic levels. Ultra-fast coherent diffractive imaging with X-ray free-electron lasers can probe structures at the relevant length scales and may reach sub-nanometer resolution on micron-sized living cells. Here we show that we can introduce a beam of aerosolised cyanobacteria into the focus of the Linac Coherent Light Source and record diffraction patterns from individual living cells at very low noise levels and at high hit ratios. We obtain two-dimensional projection images directly from the diffraction patterns, and present the results as synthetic X-ray Nomarski images calculated from the complex-valued reconstructions. We further demonstrate that it is possible to record diffraction data to nanometer resolution on live cells with X-ray lasers. Extension to sub-nanometer resolution is within reach, although improvements in pulse parameters and X-ray area detectors will be necessary to unlock this potential.
目前对于介观尺度生命组织的认识还存在明显的空白。利用 X 射线自由电子激光进行超快相干衍射成像是探测相关长度尺度结构的有力手段,其在微米级活细胞上的分辨率可达到亚纳米量级。在这里,我们展示了一种将气溶胶态蓝细菌引入到 Linac Coherent Light Source (LCLS)焦点的方法,并在非常低的噪声水平和高命中比下,从单个活细胞中记录衍射图案。我们直接从衍射图案中获得二维投影图像,并将结果呈现为从复数值重建中计算出的合成 X 射线诺马斯基图像。我们进一步证明,利用 X 射线激光可以在活细胞上记录到纳米分辨率的衍射数据。进一步提高分辨率到亚纳米量级是可行的,尽管需要改进脉冲参数和 X 射线面探测器才能实现这一潜力。