Bingol Kerem, Bruschweiler-Li Lei, Yu Cao, Somogyi Arpad, Zhang Fengli, Brüschweiler Rafael
§National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States.
Anal Chem. 2015 Apr 7;87(7):3864-70. doi: 10.1021/ac504633z. Epub 2015 Mar 12.
A novel strategy is introduced that combines high-resolution mass spectrometry (MS) with NMR for the identification of unknown components in complex metabolite mixtures encountered in metabolomics. The approach first identifies the chemical formulas of the mixture components from accurate masses by MS and then generates all feasible structures (structural manifold) that are consistent with these chemical formulas. Next, NMR spectra of each member of the structural manifold are predicted and compared with the experimental NMR spectra in order to identify the molecular structures that match the information obtained from both the MS and NMR techniques. This combined MS/NMR approach was applied to Escherichia coli extract, where the approach correctly identified a wide range of different types of metabolites, including amino acids, nucleic acids, polyamines, nucleosides, and carbohydrate conjugates. This makes this approach, which is termed SUMMIT MS/NMR, well suited for high-throughput applications for the discovery of new metabolites in biological and biomedical mixtures, overcoming the need of experimental MS and NMR metabolite databases.
本文介绍了一种新策略,该策略将高分辨率质谱(MS)与核磁共振(NMR)相结合,用于鉴定代谢组学中复杂代谢物混合物中的未知成分。该方法首先通过质谱从精确质量中识别混合物成分的化学式,然后生成与这些化学式一致的所有可行结构(结构流形)。接下来,预测结构流形中每个成员的核磁共振谱,并与实验核磁共振谱进行比较,以识别与从质谱和核磁共振技术获得的信息相匹配的分子结构。这种质谱/核磁共振联用方法应用于大肠杆菌提取物,该方法正确识别了多种不同类型的代谢物,包括氨基酸、核酸、多胺、核苷和碳水化合物共轭物。这使得这种被称为SUMMIT MS/NMR的方法非常适合用于高通量应用,以发现生物和生物医学混合物中的新代谢物,克服了对实验性质谱和核磁共振代谢物数据库的需求。