Suppr超能文献

通过结合 3D NMR 和傅里叶变换离子回旋共振串联质谱技术准确鉴定未知和已知代谢混合物成分。

Accurate Identification of Unknown and Known Metabolic Mixture Components by Combining 3D NMR with Fourier Transform Ion Cyclotron Resonance Tandem Mass Spectrometry.

机构信息

Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States.

Ion Cyclotron Resonance Program, The National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States.

出版信息

J Proteome Res. 2017 Oct 6;16(10):3774-3786. doi: 10.1021/acs.jproteome.7b00457. Epub 2017 Sep 1.

Abstract

Metabolite identification in metabolomics samples is a key step that critically impacts downstream analysis. We recently introduced the SUMMIT NMR/mass spectrometry (MS) hybrid approach for the identification of the molecular structure of unknown metabolites based on the combination of NMR, MS, and combinatorial cheminformatics. Here, we demonstrate the feasibility of the approach for an untargeted analysis of both a model mixture and E. coli cell lysate based on 2D/3D NMR experiments in combination with Fourier transform ion cyclotron resonance MS and MS/MS data. For 19 of the 25 model metabolites, SUMMIT yielded complete structures that matched those in the mixture independent of database information. Of those, seven top-ranked structures matched those in the mixture, and four of those were further validated by positive ion MS/MS. For five metabolites, not part of the 19 metabolites, correct molecular structural motifs could be identified. For E. coli, SUMMIT MS/NMR identified 20 previously known metabolites with three or more H spins independent of database information. Moreover, for 15 unknown metabolites, molecular structural fragments were determined consistent with their spin systems and chemical shifts. By providing structural information for entire metabolites or molecular fragments, SUMMIT MS/NMR greatly assists the targeted or untargeted analysis of complex mixtures of unknown compounds.

摘要

代谢组学样品中的代谢物鉴定是一个关键步骤,对下游分析有重大影响。我们最近引入了 SUMMIT NMR/质谱 (MS) 混合方法,用于根据 NMR、MS 和组合化学信息学的组合来鉴定未知代谢物的分子结构。在这里,我们展示了该方法在基于二维/三维 NMR 实验与傅里叶变换离子回旋共振 MS 和 MS/MS 数据相结合对模型混合物和大肠杆菌细胞裂解物进行非靶向分析的可行性。对于 25 种模型代谢物中的 19 种,SUMMIT 产生的完整结构与混合物中的结构匹配,而无需数据库信息。其中,七个排名最高的结构与混合物中的结构匹配,其中四个结构通过正离子 MS/MS 进一步验证。对于不属于 19 种代谢物中的 5 种代谢物,可以识别出正确的分子结构基序。对于大肠杆菌,SUMMIT MS/NMR 独立于数据库信息,鉴定出 20 种以前已知的具有三个或更多 H 自旋的代谢物。此外,对于 15 种未知代谢物,通过其自旋系统和化学位移确定了分子结构片段。通过提供整个代谢物或分子片段的结构信息,SUMMIT MS/NMR 极大地帮助了对未知化合物的复杂混合物的靶向或非靶向分析。

相似文献

引用本文的文献

3
Multiplatform untargeted metabolomics.多平台非靶向代谢组学。
Magn Reson Chem. 2023 Dec;61(12):628-653. doi: 10.1002/mrc.5350. Epub 2023 Apr 17.
7
Challenges in Identifying the Dark Molecules of Life.鉴定生命暗物质的挑战。
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):177-199. doi: 10.1146/annurev-anchem-061318-114959. Epub 2019 Mar 18.
9
Combining Mass Spectrometry and NMR Improves Metabolite Detection and Annotation.质谱和 NMR 的联用提高了代谢物的检测和注释。
J Proteome Res. 2018 Nov 2;17(11):4017-4022. doi: 10.1021/acs.jproteome.8b00567. Epub 2018 Oct 12.

本文引用的文献

4
The future of NMR-based metabolomics.基于核磁共振的代谢组学的未来。
Curr Opin Biotechnol. 2017 Feb;43:34-40. doi: 10.1016/j.copbio.2016.08.001. Epub 2016 Aug 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验