Suppr超能文献

近似规划策略的相互作用。

Interplay of approximate planning strategies.

作者信息

Huys Quentin J M, Lally Níall, Faulkner Paul, Eshel Neir, Seifritz Erich, Gershman Samuel J, Dayan Peter, Roiser Jonathan P

机构信息

Translational Neuromodeling Unit, Institute of Biomedical Engineering, University of Zürich and Swiss Federal Institute of Technology (ETH) Zürich, 8032 Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zürich, 8032 Zurich, Switzerland;

Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, United Kingdom; Experimental Therapeutics & Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892;

出版信息

Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3098-103. doi: 10.1073/pnas.1414219112. Epub 2015 Feb 9.

Abstract

Humans routinely formulate plans in domains so complex that even the most powerful computers are taxed. To do so, they seem to avail themselves of many strategies and heuristics that efficiently simplify, approximate, and hierarchically decompose hard tasks into simpler subtasks. Theoretical and cognitive research has revealed several such strategies; however, little is known about their establishment, interaction, and efficiency. Here, we use model-based behavioral analysis to provide a detailed examination of the performance of human subjects in a moderately deep planning task. We find that subjects exploit the structure of the domain to establish subgoals in a way that achieves a nearly maximal reduction in the cost of computing values of choices, but then combine partial searches with greedy local steps to solve subtasks, and maladaptively prune the decision trees of subtasks in a reflexive manner upon encountering salient losses. Subjects come idiosyncratically to favor particular sequences of actions to achieve subgoals, creating novel complex actions or "options."

摘要

人类经常在极其复杂的领域制定计划,即使是最强大的计算机在处理这些领域时也会不堪重负。为了做到这一点,他们似乎会运用许多策略和启发法,这些策略和启发法能有效地简化、近似并将艰巨任务分层分解为更简单的子任务。理论和认知研究已经揭示了几种这样的策略;然而,对于它们的建立、相互作用和效率却知之甚少。在这里,我们使用基于模型的行为分析来详细考察人类受试者在一个适度深度的规划任务中的表现。我们发现,受试者利用领域结构以一种几乎能最大程度降低计算选择值成本的方式来确立子目标,但随后会将部分搜索与贪婪的局部步骤相结合来解决子任务,并且在遇到显著损失时会以一种反射性的方式不适应地修剪子任务的决策树。受试者会独特地倾向于采用特定的行动序列来实现子目标,从而创造出新颖的复杂行动或“选项”。

相似文献

1
Interplay of approximate planning strategies.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3098-103. doi: 10.1073/pnas.1414219112. Epub 2015 Feb 9.
2
The Neural Basis of Aversive Pavlovian Guidance during Planning.
J Neurosci. 2017 Oct 18;37(42):10215-10229. doi: 10.1523/JNEUROSCI.0085-17.2017. Epub 2017 Sep 18.
4
Habitual control of goal selection in humans.
Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13817-22. doi: 10.1073/pnas.1506367112. Epub 2015 Oct 12.
5
Humans decompose tasks by trading off utility and computational cost.
PLoS Comput Biol. 2023 Jun 1;19(6):e1011087. doi: 10.1371/journal.pcbi.1011087. eCollection 2023 Jun.
6
Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees.
PLoS Comput Biol. 2012;8(3):e1002410. doi: 10.1371/journal.pcbi.1002410. Epub 2012 Mar 8.
7
The successor representation subserves hierarchical abstraction for goal-directed behavior.
PLoS Comput Biol. 2024 Feb 20;20(2):e1011312. doi: 10.1371/journal.pcbi.1011312. eCollection 2024 Feb.
8
A comparison of 'pruning' during multi-step planning in depressed and healthy individuals.
Psychol Med. 2021 Mar 12;52(16):1-9. doi: 10.1017/S0033291721000799.
9
Dynamic integration of forward planning and heuristic preferences during multiple goal pursuit.
PLoS Comput Biol. 2020 Feb 18;16(2):e1007685. doi: 10.1371/journal.pcbi.1007685. eCollection 2020 Feb.
10
CATRO: Channel Pruning via Class-Aware Trace Ratio Optimization.
IEEE Trans Neural Netw Learn Syst. 2024 Aug;35(8):11595-11607. doi: 10.1109/TNNLS.2023.3262952. Epub 2024 Aug 5.

引用本文的文献

1
Latent variable sequence identification for cognitive models with neural network estimators.
Behav Res Methods. 2025 Aug 28;57(10):272. doi: 10.3758/s13428-025-02794-0.
2
Computational basis of hierarchical and counterfactual information processing.
Nat Hum Behav. 2025 Jun 11. doi: 10.1038/s41562-025-02232-3.
3
Computational mechanisms underlying multi-step planning deficits in methamphetamine use disorder.
Transl Psychiatry. 2025 May 24;15(1):181. doi: 10.1038/s41398-025-03390-8.
5
Adaptive planning depth in human problem-solving.
R Soc Open Sci. 2025 Apr 9;12(4):241161. doi: 10.1098/rsos.241161. eCollection 2025 Apr.
6
Disentangling the Component Processes in Complex Planning Impairments Following Ventromedial Prefrontal Lesions.
J Neurosci. 2025 Mar 19;45(12):e1814242025. doi: 10.1523/JNEUROSCI.1814-24.2025.
7
Expert navigators deploy rational complexity-based decision precaching for large-scale real-world planning.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2407814122. doi: 10.1073/pnas.2407814122. Epub 2025 Jan 23.
8
Approximate planning in spatial search.
PLoS Comput Biol. 2024 Nov 12;20(11):e1012582. doi: 10.1371/journal.pcbi.1012582. eCollection 2024 Nov.
9
Group Coordination Catalyzes Individual and Cultural Intelligence.
Open Mind (Camb). 2024 Aug 31;8:1037-1057. doi: 10.1162/opmi_a_00155. eCollection 2024.
10
Optimizing competence in the service of collaboration.
Cogn Psychol. 2024 May;150:101653. doi: 10.1016/j.cogpsych.2024.101653. Epub 2024 Mar 18.

本文引用的文献

1
Actions, action sequences and habits: evidence that goal-directed and habitual action control are hierarchically organized.
PLoS Comput Biol. 2013;9(12):e1003364. doi: 10.1371/journal.pcbi.1003364. Epub 2013 Dec 5.
2
Goal neglect and knowledge chunking in the construction of novel behaviour.
Cognition. 2014 Jan;130(1):11-30. doi: 10.1016/j.cognition.2013.08.013. Epub 2013 Oct 18.
3
Neural representations of events arise from temporal community structure.
Nat Neurosci. 2013 Apr;16(4):486-92. doi: 10.1038/nn.3331. Epub 2013 Feb 17.
4
Serotonin selectively modulates reward value in human decision-making.
J Neurosci. 2012 Apr 25;32(17):5833-42. doi: 10.1523/JNEUROSCI.0053-12.2012.
5
Habits, action sequences and reinforcement learning.
Eur J Neurosci. 2012 Apr;35(7):1036-51. doi: 10.1111/j.1460-9568.2012.08050.x.
6
Bonsai trees in your head: how the pavlovian system sculpts goal-directed choices by pruning decision trees.
PLoS Comput Biol. 2012;8(3):e1002410. doi: 10.1371/journal.pcbi.1002410. Epub 2012 Mar 8.
7
Speed/accuracy trade-off between the habitual and the goal-directed processes.
PLoS Comput Biol. 2011 May;7(5):e1002055. doi: 10.1371/journal.pcbi.1002055. Epub 2011 May 26.
8
Model-based influences on humans' choices and striatal prediction errors.
Neuron. 2011 Mar 24;69(6):1204-15. doi: 10.1016/j.neuron.2011.02.027.
9
Cognitive illusions of authorship reveal hierarchical error detection in skilled typists.
Science. 2010 Oct 29;330(6004):683-6. doi: 10.1126/science.1190483.
10
Dopaminergic drugs modulate learning rates and perseveration in Parkinson's patients in a dynamic foraging task.
J Neurosci. 2009 Dec 2;29(48):15104-14. doi: 10.1523/JNEUROSCI.3524-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验