Suppr超能文献

可释放敏化剂药物分子的光活性含氟聚合物表面。

Photoactive fluoropolymer surfaces that release sensitizer drug molecules.

作者信息

Ghosh Goutam, Minnis Mihaela, Ghogare Ashwini A, Abramova Inna, Cengel Keith A, Busch Theresa M, Greer Alexander

机构信息

Department of Chemistry and Graduate Center, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States.

出版信息

J Phys Chem B. 2015 Mar 12;119(10):4155-64. doi: 10.1021/acs.jpcb.5b00808. Epub 2015 Feb 26.

Abstract

We describe a physical-organic study of two fluoropolymers bearing a photoreleasable PEGylated photosensitizer that generates (1)O2((1)Δg) [chlorin e6 methoxy tri(ethylene glycol) triester]. The surfaces are Teflon/poly(vinyl alcohol) (PVA) nanocomposite and fluorinated silica. The relative efficiency of these surfaces to photorelease the PEGylated sensitizer [shown previously to be phototoxic to ovarian cancer cells (Kimani, S. et al. J. Org. Chem 2012, 77, 10638)] was slightly higher for the nanocomposite. In the presence of red light and O2, (1)O2 is formed, which cleaves an ethene linkage to liberate the sensitizer in 68-92% yield. The fluoropolymers were designed to deal with multiple problems. Namely, their success relied not only on high O2 solubility and drug repellency but also on the C-F bonds, which physically quench little (1)O2, for singlet oxygen's productive use away from the surface. The results obtained here indicate that Teflon-like surfaces have potential uses in delivering sensitizer and singlet oxygen for applications in tissue repair and photodynamic therapy (PDT).

摘要

我们描述了对两种含可光释放的聚乙二醇化光敏剂的含氟聚合物进行的物理有机研究,该光敏剂可产生单线态氧(¹O₂(¹Δg))[二氢卟吩e6甲氧基三(乙二醇)三酯]。这些表面是聚四氟乙烯/聚乙烯醇(PVA)纳米复合材料和氟化二氧化硅。对于纳米复合材料而言,这些表面光释放聚乙二醇化敏化剂(先前已证明其对卵巢癌细胞具有光毒性(Kimani, S.等人,《有机化学杂志》,2012年,77卷,10638页))的相对效率略高。在红光和氧气存在的情况下,会形成¹O₂,其可切断乙烯键以68 - 92%的产率释放敏化剂。这些含氟聚合物旨在解决多个问题。具体而言,它们的成功不仅依赖于高氧气溶解度和药物排斥性,还依赖于碳氟键,该键对¹O₂的物理猝灭作用较小,以便单线态氧能在远离表面的地方得到有效利用。此处获得的结果表明,类聚四氟乙烯表面在递送敏化剂和单线态氧用于组织修复和光动力疗法(PDT)方面具有潜在用途。

相似文献

1
Photoactive fluoropolymer surfaces that release sensitizer drug molecules.
J Phys Chem B. 2015 Mar 12;119(10):4155-64. doi: 10.1021/acs.jpcb.5b00808. Epub 2015 Feb 26.
2
Synthesis of a poly(ethylene glycol) galloyl sensitizer tip for an 'all-in-one' photodynamic device.
J Biophotonics. 2016 Dec;9(11-12):1326-1336. doi: 10.1002/jbio.201600013. Epub 2016 Apr 4.
3
Autocatalytic-assisted photorelease of a sensitizer drug bound to a silica support.
J Org Chem. 2013 Sep 6;78(17):8537-44. doi: 10.1021/jo401266r. Epub 2013 Aug 13.
5
Meso-tetrakis(p-sulfonatophenyl)N-confused porphyrin tetrasodium salt: a potential sensitizer for photodynamic therapy.
J Med Chem. 2012 Jun 14;55(11):5110-20. doi: 10.1021/jm300009q. Epub 2012 Jun 4.
6
PEG-Phospholipids Coated Quantum Rods as Amplifiers of the Photosensitization Process by FRET.
ACS Appl Mater Interfaces. 2015 Sep 30;7(38):21107-14. doi: 10.1021/acsami.5b04318. Epub 2015 Sep 18.
10
pH-Dependent Assembly of Porphyrin-Silica Nanocomposites and Their Application in Targeted Photodynamic Therapy.
Nano Lett. 2017 Nov 8;17(11):6916-6921. doi: 10.1021/acs.nanolett.7b03310. Epub 2017 Oct 19.

引用本文的文献

1
Umbrella review of photodynamic therapy for cancer: efficacy, safety, and clinical applications.
Front Oncol. 2025 Aug 4;15:1528314. doi: 10.3389/fonc.2025.1528314. eCollection 2025.
2
Advantages of combined photodynamic therapy in the treatment of oncological diseases.
Biophys Rev. 2022 Jun 9;14(4):941-963. doi: 10.1007/s12551-022-00962-6. eCollection 2022 Aug.
3
Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials.
Chem Rev. 2020 Dec 23;120(24):13135-13272. doi: 10.1021/acs.chemrev.0c00663. Epub 2020 Oct 30.
4
S,S-Chiral Linker Induced U Shape with a Syn-facial Sensitizer and Photocleavable Ethene Group.
Photochem Photobiol. 2019 Jan;95(1):293-305. doi: 10.1111/php.13000. Epub 2018 Sep 27.
6
Fluorinated Photodynamic Therapy Device Tips and their Resistance to Fouling for In Vivo Sensitizer Release.
Photochem Photobiol. 2016 Jan-Feb;92(1):166-72. doi: 10.1111/php.12538. Epub 2015 Nov 4.

本文引用的文献

1
Visible Light-Triggered Drug Release From an Implanted Depot.
Chem Sci. 2015 Jan 1;6(1):335-341. doi: 10.1039/C4SC02651A.
3
Controlled release of fragrant molecules with visible light.
Chemistry. 2014 Nov 3;20(45):14637-40. doi: 10.1002/chem.201404203. Epub 2014 Oct 3.
4
NIR photocleavage of the Si-C bond in axial Si-phthalocyanines.
J Phys Chem A. 2014 Nov 13;118(45):10587-95. doi: 10.1021/jp505656e. Epub 2014 Sep 4.
5
Near-infrared light-responsive nanomaterials in cancer therapeutics.
Chem Soc Rev. 2014 Sep 7;43(17):6254-87. doi: 10.1039/c4cs00011k.
6
Porphyrin-phospholipid liposomes permeabilized by near-infrared light.
Nat Commun. 2014 Apr 3;5:3546. doi: 10.1038/ncomms4546.
7
Far-red light activatable, multifunctional prodrug for fluorescence optical imaging and combinational treatment.
J Med Chem. 2014 Apr 24;57(8):3401-9. doi: 10.1021/jm5000722. Epub 2014 Apr 14.
9
"Pointsource" delivery of a photosensitizer drug and singlet oxygen: eradication of glioma cells in vitro.
Photochem Photobiol. 2014 Sep-Oct;90(5):1119-25. doi: 10.1111/php.12274. Epub 2014 Apr 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验