Suppr超能文献

气候变化对登革热和基孔肯雅病毒媒介全球分布的影响。

Climate change influences on global distributions of dengue and chikungunya virus vectors.

作者信息

Campbell Lindsay P, Luther Caylor, Moo-Llanes David, Ramsey Janine M, Danis-Lozano Rogelio, Peterson A Townsend

机构信息

Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA.

Centro Regional de Investigación en Salud Pública-INSP, 19 Poniente y 4ta Norte, 30700 Tapachula, Chiapas, Mexico.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2015 Apr 5;370(1665). doi: 10.1098/rstb.2014.0135.

Abstract

Numerous recent studies have illuminated global distributions of human cases of dengue and other mosquito-transmitted diseases, yet the potential distributions of key vector species have not been incorporated integrally into those mapping efforts. Projections onto future conditions to illuminate potential distributional shifts in coming decades are similarly lacking, at least outside Europe. This study examined the global potential distributions of Aedes aegypti and Aedes albopictus in relation to climatic variation worldwide to develop ecological niche models that, in turn, allowed anticipation of possible changes in distributional patterns into the future. Results indicated complex global rearrangements of potential distributional areas, which--given the impressive dispersal abilities of these two species--are likely to translate into actual distributional shifts. This exercise also signalled a crucial priority: digitization and sharing of existing distributional data so that models of this sort can be developed more rigorously, as present availability of such data is fragmentary and woefully incomplete.

摘要

近期众多研究揭示了登革热及其他蚊媒传播疾病在全球的病例分布情况,然而关键病媒物种的潜在分布情况尚未被全面纳入这些绘图工作中。同样,至少在欧洲以外地区,缺乏对未来情况的预测以阐明未来几十年潜在的分布变化。本研究考察了埃及伊蚊和白纹伊蚊在全球范围内与气候变化相关的潜在分布情况,以建立生态位模型,进而预测未来分布模式可能发生的变化。结果表明潜在分布区域在全球范围内发生了复杂的重新排列,鉴于这两个物种强大的扩散能力,这很可能转化为实际的分布变化。这项工作还凸显了一个关键的优先事项:现有分布数据的数字化和共享,以便能够更严格地开发此类模型,因为目前此类数据的可得性零散且极不完整。

相似文献

1
Climate change influences on global distributions of dengue and chikungunya virus vectors.
Philos Trans R Soc Lond B Biol Sci. 2015 Apr 5;370(1665). doi: 10.1098/rstb.2014.0135.
2
Dengue and chikungunya: long-distance spread and outbreaks in naïve areas.
Pathog Glob Health. 2014 Dec;108(8):349-55. doi: 10.1179/2047773214Y.0000000163. Epub 2014 Dec 9.
5
Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate.
PLoS One. 2018 Dec 31;13(12):e0210122. doi: 10.1371/journal.pone.0210122. eCollection 2018.
6
Historical inability to control Aedes aegypti as a main contributor of fast dispersal of chikungunya outbreaks in Latin America.
Antiviral Res. 2015 Dec;124:30-42. doi: 10.1016/j.antiviral.2015.10.015. Epub 2015 Oct 27.
7
Potential of Aedes aegypti populations in Madeira Island to transmit dengue and chikungunya viruses.
Parasit Vectors. 2018 Sep 12;11(1):509. doi: 10.1186/s13071-018-3081-4.
8
Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission.
PLoS Negl Trop Dis. 2018 May 10;12(5):e0006451. doi: 10.1371/journal.pntd.0006451. eCollection 2018 May.
9
Dengue Chikungunya co-infection: A live-in relationship??
Biochem Biophys Res Commun. 2017 Oct 28;492(4):608-616. doi: 10.1016/j.bbrc.2017.02.008. Epub 2017 Feb 9.

引用本文的文献

1
Neurological consequences of climate change: a review of emerging challenges and potential impacts on brain health.
Ann Med Surg (Lond). 2025 May 26;87(7):4209-4221. doi: 10.1097/MS9.0000000000003425. eCollection 2025 Jul.
2
and dengue: insights into transmission dynamics and viral lifecycle.
Epidemiol Infect. 2025 Aug 1;153:e88. doi: 10.1017/S0950268825100320.
4
Molecules to spillover: how climate warming impacts mosquito-borne viruses.
Curr Opin Virol. 2025 Jun 24;72:101473. doi: 10.1016/j.coviro.2025.101473.
6
In vitro and in vivo characterization of a novel West Nile virus lineage 2 strain.
Npj Viruses. 2024 Nov 25;2(1):61. doi: 10.1038/s44298-024-00070-0.
8
Elevated developmental temperatures below the lethal limit reduce Aedes aegypti fertility.
J Exp Biol. 2025 Feb 1;228(3). doi: 10.1242/jeb.249803. Epub 2025 Feb 7.
10
Suitability of anthrax (Bacillus anthracis) in the Black Sea basin through the scope of distribution modelling.
PLoS One. 2024 Nov 7;19(11):e0303413. doi: 10.1371/journal.pone.0303413. eCollection 2024.

本文引用的文献

1
Chikungunya outbreak in the Caribbean region, December 2013 to March 2014, and the significance for Europe.
Euro Surveill. 2014 Apr 3;19(13):20759. doi: 10.2807/1560-7917.es2014.19.13.20759.
5
The global distribution and burden of dengue.
Nature. 2013 Apr 25;496(7446):504-7. doi: 10.1038/nature12060. Epub 2013 Apr 7.
6
Modeling dynamic introduction of Chikungunya virus in the United States.
PLoS Negl Trop Dis. 2012;6(11):e1918. doi: 10.1371/journal.pntd.0001918. Epub 2012 Nov 29.
7
Ecological niche structure and rangewide abundance patterns of species.
Biol Lett. 2013 Feb 23;9(1):20120637. doi: 10.1098/rsbl.2012.0637. Epub 2012 Nov 7.
8
Refining the global spatial limits of dengue virus transmission by evidence-based consensus.
PLoS Negl Trop Dis. 2012;6(8):e1760. doi: 10.1371/journal.pntd.0001760. Epub 2012 Aug 7.
9
Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios.
J R Soc Interface. 2012 Oct 7;9(75):2708-17. doi: 10.1098/rsif.2012.0138. Epub 2012 Apr 25.
10
Dengue outbreak in Key West, Florida, USA, 2009.
Emerg Infect Dis. 2012 Jan;18(1):135-7. doi: 10.3201/eid1801.110130.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验